Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90380758
resolution.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 03:24
Size
12 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 03:24 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22063253
Attached To
rAKA akantu
resolution.cc
View Options
/**
* @file resolution.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Jan 7 2019
* @date last modification: Mon Jan 7 2019
*
* @brief Implementation of common part of the contact resolution class
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "resolution.hh"
#include "contact_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
Resolution::Resolution(ContactMechanicsModel & model, const ID & id)
: Memory(id, model.getMemoryID()), Parsable(ParserType::_contact_resolution, id),
fem(model.getFEEngine()),
name(""), model(model),
spatial_dimension(model.getMesh().getSpatialDimension()){
AKANTU_DEBUG_IN();
this->initialize();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Resolution::~Resolution() = default;
/* -------------------------------------------------------------------------- */
void Resolution::initialize() {
registerParam("name", name, std::string(), _pat_parsable | _pat_readable);
registerParam("mu", mu, Real(0.), _pat_parsable | _pat_modifiable,
"Friciton Coefficient");
}
/* -------------------------------------------------------------------------- */
void Resolution::printself(std::ostream & stream, int indent) const {
std::string space;
for (Int i = 0; i < indent; i++, space += AKANTU_INDENT)
;
std::string type = getID().substr(getID().find_last_of(':') + 1);
stream << space << "Contact Resolution " << type << " [" << std::endl;
Parsable::printself(stream, indent);
stream << space << "]" << std::endl;
}
/* -------------------------------------------------------------------------- */
void Resolution::assembleInternalForces(GhostType ghost_type) {
AKANTU_DEBUG_IN();
auto & internal_force =
const_cast<Array<Real> &>(model.getInternalForce());
auto & contact_area =
const_cast<Array<Real> &>(model.getContactArea());
auto & contact_map = model.getContactMap();
const auto slave_nodes = model.getMesh().getElementGroup(name).getNodes();
for (auto & slave: slave_nodes) {
if (contact_map.find(slave) == contact_map.end())
continue;
auto & master = contact_map[slave].master;
auto & gap = contact_map[slave].gap;
auto & projection = contact_map[slave].projection;
auto & normal = contact_map[slave].normal;
const auto & connectivity = contact_map[slave].connectivity;
const ElementType & type = master.type;
UInt nb_nodes_master = Mesh::getNbNodesPerElement(master.type);
Vector<Real> shapes(nb_nodes_master);
Matrix<Real> shapes_derivatives(spatial_dimension - 1, nb_nodes_master);
#define GET_SHAPES_NATURAL(type) \
ElementClass<type>::computeShapes(projection, shapes)
AKANTU_BOOST_ALL_ELEMENT_SWITCH(GET_SHAPES_NATURAL);
#undef GET_SHAPES_NATURAL
#define GET_SHAPE_DERIVATIVES_NATURAL(type) \
ElementClass<type>::computeDNDS(projection, shapes_derivatives)
AKANTU_BOOST_ALL_ELEMENT_SWITCH(GET_SHAPE_DERIVATIVES_NATURAL);
#undef GET_SHAPE_DERIVATIVES_NATURAL
Vector<Real> elem_force(connectivity.size() * spatial_dimension);
Matrix<Real> tangents(spatial_dimension - 1, spatial_dimension);
Matrix<Real> global_coords(nb_nodes_master, spatial_dimension);
computeCoordinates(master, global_coords);
computeTangents(shapes_derivatives, global_coords, tangents);
Matrix<Real> surface_matrix(spatial_dimension - 1, spatial_dimension - 1);
computeSurfaceMatrix(tangents, surface_matrix);
Vector<Real> n(connectivity.size() * spatial_dimension);
computeN(n, shapes, normal);
computeNormalForce(elem_force, n, gap);
Array<Real> t_alpha(connectivity.size() * spatial_dimension, spatial_dimension - 1);
Array<Real> n_alpha(connectivity.size() * spatial_dimension, spatial_dimension - 1);
Array<Real> d_alpha(connectivity.size() * spatial_dimension, spatial_dimension - 1);
computeTalpha(t_alpha, shapes, tangents);
computeNalpha(n_alpha, shapes_derivatives, normal);
computeDalpha(d_alpha, n_alpha, t_alpha, surface_matrix, gap);
//computeFrictionForce(elem_force, d_alpha, gap);
UInt nb_degree_of_freedom = internal_force.getNbComponent();
for (UInt i = 0; i < connectivity.size(); ++i) {
UInt n = connectivity[i];
for (UInt j = 0; j < nb_degree_of_freedom; ++j) {
UInt offset_node = n * nb_degree_of_freedom + j;
internal_force[offset_node] += elem_force[i*nb_degree_of_freedom + j];
internal_force[offset_node] *= contact_area[n];
}
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Resolution::assembleStiffnessMatrix(GhostType ghost_type) {
AKANTU_DEBUG_IN();
auto & contact_stiffness =
model.getDOFManager().getMatrix("K");
const auto slave_nodes =
model.getMesh().getElementGroup(name).getNodes();
auto & contact_map = model.getContactMap();
for (auto & slave: slave_nodes) {
if (contact_map.find(slave) == contact_map.end()) {
continue;
}
auto & master = contact_map[slave].master;
auto & gap = contact_map[slave].gap;
auto & projection = contact_map[slave].projection;
auto & normal = contact_map[slave].normal;
const auto & connectivity = contact_map[slave].connectivity;
const ElementType & type = master.type;
UInt nb_nodes_master = Mesh::getNbNodesPerElement(master.type);
Vector<Real> shapes(nb_nodes_master);
Matrix<Real> shapes_derivatives(spatial_dimension - 1, nb_nodes_master);
#define GET_SHAPES_NATURAL(type) \
ElementClass<type>::computeShapes(projection, shapes)
AKANTU_BOOST_ALL_ELEMENT_SWITCH(GET_SHAPES_NATURAL);
#undef GET_SHAPES_NATURAL
#define GET_SHAPE_DERIVATIVES_NATURAL(type) \
ElementClass<type>::computeDNDS(projection, shapes_derivatives)
AKANTU_BOOST_ALL_ELEMENT_SWITCH(GET_SHAPE_DERIVATIVES_NATURAL);
#undef GET_SHAPE_DERIVATIVES_NATURAL
Matrix<Real> elementary_stiffness(connectivity.size() * spatial_dimension,
connectivity.size() * spatial_dimension);
Matrix<Real> tangents(spatial_dimension - 1, spatial_dimension);
Matrix<Real> global_coords(nb_nodes_master, spatial_dimension);
computeCoordinates(master, global_coords);
computeTangents(shapes_derivatives, global_coords, tangents);
Matrix<Real> surface_matrix(spatial_dimension - 1, spatial_dimension - 1);
computeSurfaceMatrix(tangents, surface_matrix);
Vector<Real> n(connectivity.size() * spatial_dimension);
Array<Real> t_alpha(connectivity.size() * spatial_dimension, spatial_dimension - 1);
Array<Real> n_alpha(connectivity.size() * spatial_dimension, spatial_dimension - 1);
Array<Real> d_alpha(connectivity.size() * spatial_dimension, spatial_dimension - 1);
computeN( n, shapes, normal);
computeTalpha( t_alpha, shapes, tangents);
computeNalpha( n_alpha, shapes_derivatives, normal);
computeDalpha( d_alpha, n_alpha, t_alpha, surface_matrix, gap);
//computeTangentModuli(n, n_alpha, t_alpha, d_alpha, gap);
/*std::vector<UInt> equations;
UInt nb_degree_of_freedom = Model::spatial_dimension;
for (UInt i : arange(connectivity.size())) {
UInt n = connectivity[i];
for (UInt j : arange(nb_degree_of_freedom))
equations.push_back(n * degree_of_freedom + j);
}
for (UInt i : arange(kc.rows())) {
UInt row = equations[i];
for (UInt j : arange(kc.cols())) {
UInt col = equations[j];
contact_stiffness(row, col) += kc(i, j);
}
}*/
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Resolution::computeTangents(Matrix<Real> & shapes_derivatives, Matrix<Real> & global_coords,
Matrix<Real> & tangents) {
/*UInt index = 0;
for (auto && values : zip(make_view(tangents, spatial_dimension))) {
auto & tangent = std::get<0>(values);
for (UInt n : arange(global_coords.getNbComponent())) {
tangent += shapes_derivatives(n, index) * global_coords(n);
}
++index;
}*/
tangents.mul<false, true>(shapes_derivatives, global_coords);
}
/* -------------------------------------------------------------------------- */
void Resolution::computeSurfaceMatrix(Matrix<Real> & tangents, Matrix<Real> & surface_matrix) {
/*Matrix<Real> A(surface_matrix);
for (UInt i : arange(spatial_dimension - 1)) {
for (UInt j : arange(spatial_dimension -1 )) {
A(i, j) = tangents(i) * tangents(j);
}
}*/
surface_matrix.mul<false, true>(tangents, tangents);
surface_matrix = surface_matrix.inverse();
//A.inverse(surface_matrix);
}
/* -------------------------------------------------------------------------- */
void Resolution::computeN(Vector<Real> & n, Vector<Real> & shapes, Vector<Real> & normal) {
UInt dim = normal.size();
for (UInt i = 0; i < dim; ++i) {
n[i] = normal[i];
for (UInt j = 0; j < shapes.size(); ++j) {
n[(1 + j) * dim + i] = -normal[i] * shapes[j];
}
}
}
/* -------------------------------------------------------------------------- */
void Resolution::computeTalpha(Array<Real> & t_alpha, Vector<Real> & shapes,
Matrix<Real> & tangents) {
/*for (auto && values:
zip(tangents.transpose(),
make_view(t_alpha, t_alpha.size()))) {
auto & tangent = std::get<0>(values);
auto & t_s = std::get<1>(values);
for (UInt i : arange(spatial_dimension)) {
t_s[i] = -tangent(i);
for (UInt j : arange(shapes.size())) {
t_s[(1 + j)*spatial_dimension + i] = -shapes[j] * tangent(i);
}
}
}*/
}
/* -------------------------------------------------------------------------- */
void Resolution::computeNalpha(Array<Real> & n_alpha, Matrix<Real> & shapes_derivatives,
Vector<Real> & normal) {
/*for (auto && values:
zip(shapes_derivatives.transpose(),
make_view(n_alpha, n_alpha.size()))) {
auto & dnds = std::get<0>(values);
auto & n_s = std::get<1>(values);
for (UInt i : arange(spatial_dimension)) {
n_s[i] = 0;
for (UInt j : arange(shapes_derivatives.size())) {
n_s[(1 + j)*spatial_dimension + i] = -shapes_derivatives[j]*normal[i];
}
}
}*/
}
/* -------------------------------------------------------------------------- */
void Resolution::computeDalpha(Array<Real> & d_alpha, Array<Real> & n_alpha,
Array<Real> & t_alpha, Matrix<Real> & surface_matrix,
Real & gap) {
/*for (auto && entry : zip(surface_matrix.transpose(),
make_view(d_alpha, d_alpha.size()))) {
auto & a_s = std::get<0>(entry);
auto & d_s = std::get<1>(entry);
for (auto && values :
enumerate(make_view(t_alpha, t_alpha.size()),
make_view(n_alpha, n_alpha.size()))) {
auto & index = std::get<0>(values);
auto & t_s = std::get<1>(values);
auto & n_s = std::get<2>(values);
d_s += (t_s + gap * n_s);
d_s *= a_s(index);
}
}*/
}
/* -------------------------------------------------------------------------- */
void Resolution::computeCoordinates(const Element & el, Matrix<Real> & coords) {
UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(el.type);
Vector<UInt> connect = model.getMesh().getConnectivity(el.type, _not_ghost)
.begin(nb_nodes_per_element)[el.element];
// change this to current position
auto & positions = model.getMesh().getNodes();
for (UInt n = 0; n < nb_nodes_per_element; ++n) {
UInt node = connect[n];
for (UInt s: arange(spatial_dimension)) {
coords(n, s) = positions(node, s);
}
}
}
} // akantu
Event Timeline
Log In to Comment