Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90454306
ElementHex8.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 20:27
Size
5 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 20:27 (1 d, 22 h)
Engine
blob
Format
Raw Data
Handle
22041184
Attached To
rGOOSEFEM GooseFEM
ElementHex8.cpp
View Options
#include "support.h"
using T2 = cppmat::tiny::cartesian::tensor2 <double,3>;
using T2s = cppmat::tiny::cartesian::tensor2s<double,3>;
// =================================================================================================
TEST_CASE("GooseFEM::ElementHex8", "ElementHex8.h")
{
// =================================================================================================
SECTION( "int_N_scalar_NT_dV" )
{
// mesh
GooseFEM::Mesh::Hex8::Regular mesh(3,3,3);
// vector-definition, and a diagonal matrix
GooseFEM::Vector vec(mesh.conn(), mesh.dofsPeriodic());
GooseFEM::MatrixDiagonal mat(mesh.conn(), mesh.dofsPeriodic());
// element definition, with nodal quadrature
GooseFEM::Element::Hex8::Quadrature quad(
vec.asElement(mesh.coor()),
GooseFEM::Element::Hex8::Nodal::xi(),
GooseFEM::Element::Hex8::Nodal::w()
);
// scalar per quadrature point (e.g. mass-density "rho")
GooseFEM::ArrD rho = GooseFEM::ArrD::Constant({mesh.nelem(), quad.nip()}, 1.);
// evaluate integral and assemble diagonal matrix (e.g. mass matrix)
mat.assemble(quad.int_N_scalar_NT_dV(rho));
// check matrix
// - get the matrix
GooseFEM::ColD M = mat.asDiagonal();
// - check the size
REQUIRE( M.size() == vec.ndof() );
// - check each component
for ( auto i = 0 ; i < M.size() ; ++i )
EQ( M(i), 1 );
}
// =================================================================================================
SECTION( "symGradN_vector" )
{
// mesh
GooseFEM::Mesh::Hex8::FineLayer mesh(27,27,27);
// vector-definition
GooseFEM::Vector vec(mesh.conn(), mesh.dofs());
// element definition, with Gauss quadrature
GooseFEM::Element::Hex8::Quadrature quad( vec.asElement(mesh.coor()) );
// macroscopic deformation gradient
// - allocate
T2 F;
// - zero-initialize
F.setZero();
// - set non-zero components
F(0,1) = 0.1;
// convert the macroscopic strain tensor
T2 EPS = .5 * ( F + F.T() );
// nodal coordinates
GooseFEM::MatD coor = mesh.coor();;
// nodal displacement
// - allocate
GooseFEM::MatD disp(mesh.nnode(), mesh.ndim());
// - zero-initialize
disp.setZero();
// apply macroscopic deformation gradient
for ( size_t n = 0 ; n < mesh.nnode() ; ++n )
for ( size_t i = 0 ; i < F.ndim() ; ++i )
for ( size_t j = 0 ; j < F.ndim() ; ++j )
disp(n,i) += F(i,j) * coor(n,j);
// compute quadrature point tensors
GooseFEM::ArrD eps = quad.symGradN_vector(vec.asElement(disp));
// compute volume averaged tensor
GooseFEM::ArrD epsbar = eps.average(quad.dV(eps.shape(-1)), {0,1});
// check
// - temporary tensor, to view the tensors
cppmat::view::cartesian::tensor2s<double,3> Eps;
// - check sizes
REQUIRE( eps.shape(0) == mesh.nelem() );
REQUIRE( eps.shape(1) == quad.nip() );
REQUIRE( eps.shape(2) == Eps.size() );
// - check all components
for ( size_t e = 0 ; e < mesh.nelem() ; ++e ) {
for ( size_t k = 0 ; k < quad.nip() ; ++k ) {
Eps.setMap(&eps(e,k));
for ( size_t i = 0 ; i < Eps.ndim() ; ++i )
for ( size_t j = 0 ; j < Eps.ndim() ; ++j )
EQ( Eps(i,j), EPS(i,j) );
}
}
// check macroscopic tensor
// - convert to tensor object
T2s Epsbar = T2s::Copy(epsbar.begin(), epsbar.end());
// - check all components
for ( size_t i = 0 ; i < Epsbar.ndim() ; ++i )
for ( size_t j = 0 ; j < Epsbar.ndim() ; ++j )
EQ( Epsbar(i,j), EPS(i,j) );
}
// =================================================================================================
SECTION( "symGradN_vector, int_gradN_dot_tensor2s_dV" )
{
// mesh
GooseFEM::Mesh::Hex8::FineLayer mesh(27,27,27);
// vector-definition
GooseFEM::Vector vec(mesh.conn(), mesh.dofsPeriodic());
// element definition, with Gauss quadrature
GooseFEM::Element::Hex8::Quadrature quad( vec.asElement(mesh.coor()) );
// macroscopic deformation gradient
// - allocate
T2 F;
// - zero-initialize
F.setZero();
// - set non-zero components
F(0,1) = 0.1;
// nodal coordinates
GooseFEM::MatD coor = mesh.coor();;
// nodal displacement
// - allocate
GooseFEM::MatD disp(mesh.nnode(), mesh.ndim());
// - zero-initialize
disp.setZero();
// apply macroscopic deformation gradient
for ( size_t n = 0 ; n < mesh.nnode() ; ++n )
for ( size_t i = 0 ; i < F.ndim() ; ++i )
for ( size_t j = 0 ; j < F.ndim() ; ++j )
disp(n,i) += F(i,j) * coor(n,j);
// compute quadrature point tensors
GooseFEM::ArrD eps = quad.symGradN_vector(vec.asElement(disp));
// nodal force vector (should be zero, as it is only sensitive to periodic fluctuations)
GooseFEM::ColD Fi = vec.assembleDofs(quad.int_gradN_dot_tensor2s_dV(eps));
for ( size_t i = 0 ; i < vec.ndof() ; ++i )
if ( std::abs(Fi(i)) > 1.e-12 )
std::cout << i << ", " << Fi(i) << std::endl;
// check
// - size
REQUIRE( Fi.size() == vec.ndof() );
// - check all components
for ( size_t i = 0 ; i < vec.ndof() ; ++i )
EQ( Fi(i), 0 );
}
// =================================================================================================
}
Event Timeline
Log In to Comment