Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90465028
fix_ttm_mod.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 22:31
Size
36 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 22:31 (1 d, 22 h)
Engine
blob
Format
Raw Data
Handle
21908350
Attached To
rLAMMPS lammps
fix_ttm_mod.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: (in addition to authors of original fix ttm)
Sergey Starikov (Joint Institute for High Temperatures of RAS)
Vasily Pisarev (Joint Institute for High Temperatures of RAS)
------------------------------------------------------------------------- */
#include "lmptype.h"
#include <mpi.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "fix_ttm_mod.h"
#include "atom.h"
#include "force.h"
#include "update.h"
#include "domain.h"
#include "region.h"
#include "respa.h"
#include "comm.h"
#include "random_mars.h"
#include "memory.h"
#include "error.h"
#include "citeme.h"
#include "math_const.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
#define MAXLINE 1024
static const char cite_fix_ttm_mod[] =
"fix ttm/mod command:\n\n"
"@article{Pisarev2014,\n"
"author = {Pisarev, V. V. and Starikov, S. V.},\n"
"title = {{Atomistic simulation of ion track formation in UO2.}},\n"
"journal = {J.~Phys.:~Condens.~Matter},\n"
"volume = {26},\n"
"number = {47},\n"
"pages = {475401},\n"
"year = {2014}\n"
"}\n\n"
"@article{Norman2013,\n"
"author = {Norman, G. E. and Starikov, S. V. and Stegailov, V. V. and Saitov, I. M. and Zhilyaev, P. A.},\n"
"title = {{Atomistic Modeling of Warm Dense Matter in the Two-Temperature State}},\n"
"journal = {Contrib.~Plasm.~Phys.},\n"
"number = {2},\n"
"volume = {53},\n"
"pages = {129--139},\n"
"year = {2013}\n"
"}\n\n";
/* ---------------------------------------------------------------------- */
FixTTMMod::FixTTMMod(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg)
{
if (lmp->citeme) lmp->citeme->add(cite_fix_ttm_mod);
if (narg < 9) error->all(FLERR,"Illegal fix ttm/mod command");
vector_flag = 1;
size_vector = 2;
global_freq = 1;
extvector = 1;
nevery = 1;
restart_peratom = 1;
restart_global = 1;
seed = force->inumeric(FLERR,arg[3]);
if (seed <= 0)
error->all(FLERR,"Invalid random number seed in fix ttm/mod command");
FILE *fpr_2 = force->open_potential(arg[4]);
if (fpr_2 == NULL) {
char str[128];
sprintf(str,"Cannot open file %s",arg[4]);
error->all(FLERR,str);
}
nxnodes = force->inumeric(FLERR,arg[5]);
nynodes = force->inumeric(FLERR,arg[6]);
nznodes = force->inumeric(FLERR,arg[7]);
if (nxnodes <= 0 || nynodes <= 0 || nznodes <= 0)
error->all(FLERR,"Fix ttm/mod number of nodes must be > 0");
FILE *fpr = force->open_potential(arg[8]);
if (fpr == NULL) {
char str[128];
sprintf(str,"Cannot open file %s",arg[8]);
error->all(FLERR,str);
}
nfileevery = force->inumeric(FLERR,arg[9]);
if (nfileevery > 0) {
if (narg != 11) error->all(FLERR,"Illegal fix ttm/mod command");
MPI_Comm_rank(world,&me);
if (me == 0) {
fp = fopen(arg[10],"w");
if (fp == NULL) {
char str[128];
sprintf(str,"Cannot open fix ttm/mod file %s",arg[10]);
error->one(FLERR,str);
}
}
}
char linee[MAXLINE];
double tresh_d;
int tresh_i;
// C0 (metal)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
esheat_0 = tresh_d;
// C1 (metal*10^3)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
esheat_1 = tresh_d;
// C2 (metal*10^6)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
esheat_2 = tresh_d;
// C3 (metal*10^9)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
esheat_3 = tresh_d;
// C4 (metal*10^12)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
esheat_4 = tresh_d;
// C_limit
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
C_limit = tresh_d;
//Temperature damping factor
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
T_damp = tresh_d;
// rho_e
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
electronic_density = tresh_d;
//thermal_diffusion
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
el_th_diff = tresh_d;
// gamma_p
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
gamma_p = tresh_d;
// gamma_s
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
gamma_s = tresh_d;
// v0
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
v_0 = tresh_d;
// average intensity of pulse (source of energy) (metal units)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
intensity = tresh_d;
// coordinate of 1st surface in x-direction (in box units) - constant
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%d",&tresh_i);
surface_l = tresh_i;
// coordinate of 2nd surface in x-direction (in box units) - constant
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%d",&tresh_i);
surface_r = tresh_i;
// skin_layer = intensity is reduced (I=I0*exp[-x/skin_layer])
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%d",&tresh_i);
skin_layer = tresh_i;
// width of pulse (picoseconds)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
width = tresh_d;
// factor of electronic pressure (PF) Pe = PF*Ce*Te
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
pres_factor = tresh_d;
// effective free path of electrons (angstrom)
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
free_path = tresh_d;
// ionic density (ions*angstrom^{-3})
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
ionic_density = tresh_d;
// if movsur = 0: surface is freezed
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%d",&tresh_i);
movsur = tresh_i;
// electron_temperature_min
fgets(linee,MAXLINE,fpr_2);
fgets(linee,MAXLINE,fpr_2);
sscanf(linee,"%lg",&tresh_d);
electron_temperature_min = tresh_d;
fclose(fpr_2);
//t_surface is determined by electronic temperature (not constant)
t_surface_l = surface_l;
mult_factor = intensity;
duration = 0.0;
v_0_sq = v_0*v_0;
surface_double = double(t_surface_l)*(domain->xprd/nxnodes);
if ((C_limit+esheat_0) < 0.0)
error->all(FLERR,"Fix ttm/mod electronic_specific_heat must be >= 0.0");
if (electronic_density <= 0.0)
error->all(FLERR,"Fix ttm/mod electronic_density must be > 0.0");
if (gamma_p < 0.0) error->all(FLERR,"Fix ttm/mod gamma_p must be >= 0.0");
if (gamma_s < 0.0) error->all(FLERR,"Fix ttm/mod gamma_s must be >= 0.0");
if (v_0 < 0.0) error->all(FLERR,"Fix ttm/mod v_0 must be >= 0.0");
if (ionic_density <= 0.0) error->all(FLERR,"Fix ttm/mod ionic_density must be > 0.0");
if (surface_l < 0) error->all(FLERR,"Surface coordinates must be >= 0");
if (surface_l >= surface_r) error->all(FLERR, "Left surface coordinate must be less than right surface coordinate");
// initialize Marsaglia RNG with processor-unique seed
random = new RanMars(lmp,seed + comm->me);
// allocate per-type arrays for force prefactors
gfactor1 = new double[atom->ntypes+1];
gfactor2 = new double[atom->ntypes+1];
// allocate 3d grid variables
total_nnodes = nxnodes*nynodes*nznodes;
memory->create(nsum,nxnodes,nynodes,nznodes,"ttm/mod:nsum");
memory->create(nsum_all,nxnodes,nynodes,nznodes,"ttm/mod:nsum_all");
memory->create(T_initial_set,nxnodes,nynodes,nznodes,"ttm/mod:T_initial_set");
memory->create(sum_vsq,nxnodes,nynodes,nznodes,"ttm/mod:sum_vsq");
memory->create(sum_mass_vsq,nxnodes,nynodes,nznodes,"ttm/mod:sum_mass_vsq");
memory->create(sum_vsq_all,nxnodes,nynodes,nznodes,"ttm/mod:sum_vsq_all");
memory->create(sum_mass_vsq_all,nxnodes,nynodes,nznodes,
"ttm/mod:sum_mass_vsq_all");
memory->create(T_electron_old,nxnodes,nynodes,nznodes,"ttm/mod:T_electron_old");
memory->create(T_electron_first,nxnodes,nynodes,nznodes,"ttm/mod:T_electron_first");
memory->create(T_electron,nxnodes,nynodes,nznodes,"ttm/mod:T_electron");
memory->create(net_energy_transfer,nxnodes,nynodes,nznodes,
"ttm/mod:net_energy_transfer");
memory->create(net_energy_transfer_all,nxnodes,nynodes,nznodes,
"ttm/mod:net_energy_transfer_all");
flangevin = NULL;
grow_arrays(atom->nmax);
// zero out the flangevin array
for (int i = 0; i < atom->nmax; i++) {
flangevin[i][0] = 0;
flangevin[i][1] = 0;
flangevin[i][2] = 0;
}
atom->add_callback(0);
atom->add_callback(1);
// set initial electron temperatures from user input file
if (me == 0) read_initial_electron_temperatures(fpr);
MPI_Bcast(&T_electron[0][0][0],total_nnodes,MPI_DOUBLE,0,world);
fclose(fpr);
}
/* ---------------------------------------------------------------------- */
FixTTMMod::~FixTTMMod()
{
if (nfileevery && me == 0) fclose(fp);
delete random;
delete [] gfactor1;
delete [] gfactor2;
memory->destroy(nsum);
memory->destroy(nsum_all);
memory->destroy(T_initial_set);
memory->destroy(sum_vsq);
memory->destroy(sum_mass_vsq);
memory->destroy(sum_vsq_all);
memory->destroy(sum_mass_vsq_all);
memory->destroy(T_electron_first);
memory->destroy(T_electron_old);
memory->destroy(T_electron);
memory->destroy(flangevin);
memory->destroy(net_energy_transfer);
memory->destroy(net_energy_transfer_all);
}
/* ---------------------------------------------------------------------- */
int FixTTMMod::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= POST_FORCE_RESPA;
mask |= END_OF_STEP;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::init()
{
if (domain->dimension == 2)
error->all(FLERR,"Cannot use fix ttm/mod with 2d simulation");
if (domain->nonperiodic != 0)
error->all(FLERR,"Cannot use nonperiodic boundares with fix ttm/mod");
if (domain->triclinic)
error->all(FLERR,"Cannot use fix ttm/mod with triclinic box");
// set force prefactors
for (int i = 1; i <= atom->ntypes; i++) {
gfactor1[i] = - gamma_p / force->ftm2v;
gfactor2[i] =
sqrt(24.0*force->boltz*gamma_p/update->dt/force->mvv2e) / force->ftm2v;
}
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
net_energy_transfer_all[ixnode][iynode][iznode] = 0;
if (strstr(update->integrate_style,"respa"))
nlevels_respa = ((Respa *) update->integrate)->nlevels;
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::setup(int vflag)
{
if (strstr(update->integrate_style,"verlet"))
post_force_setup(vflag);
else {
((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1);
post_force_respa_setup(vflag,nlevels_respa-1,0);
((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1);
}
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::post_force(int vflag)
{
double **x = atom->x;
double **v = atom->v;
double **f = atom->f;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
double dx = domain->xprd/nxnodes;
double dy = domain->yprd/nynodes;
double dz = domain->zprd/nynodes;
double gamma1,gamma2;
// apply damping and thermostat to all atoms in fix group
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
double xscale = (x[i][0] - domain->boxlo[0])/domain->xprd;
double yscale = (x[i][1] - domain->boxlo[1])/domain->yprd;
double zscale = (x[i][2] - domain->boxlo[2])/domain->zprd;
int ixnode = static_cast<int>(xscale*nxnodes);
int iynode = static_cast<int>(yscale*nynodes);
int iznode = static_cast<int>(zscale*nznodes);
while (ixnode > nxnodes-1) ixnode -= nxnodes;
while (iynode > nynodes-1) iynode -= nynodes;
while (iznode > nznodes-1) iznode -= nznodes;
while (ixnode < 0) ixnode += nxnodes;
while (iynode < 0) iynode += nynodes;
while (iznode < 0) iznode += nznodes;
if (T_electron[ixnode][iynode][iznode] < 0)
error->all(FLERR,"Electronic temperature dropped below zero");
double tsqrt = sqrt(T_electron[ixnode][iynode][iznode]);
gamma1 = gfactor1[type[i]];
double vsq = v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2];
if (vsq > v_0_sq) gamma1 *= (gamma_p + gamma_s)/gamma_p;
gamma2 = gfactor2[type[i]] * tsqrt;
if (ixnode >= surface_l){
if (ixnode < surface_r){
flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
double x_surf = dx*double(surface_l)+dx;
double x_at = x[i][0] - domain->boxlo[0];
int right_xnode = ixnode + 1;
int right_ynode = iynode + 1;
int right_znode = iznode + 1;
if (right_xnode == nxnodes) right_xnode = 0;
if (right_ynode == nynodes) right_ynode = 0;
if (right_znode == nznodes) right_znode = 0;
int left_xnode = ixnode - 1;
int left_ynode = iynode - 1;
int left_znode = iznode - 1;
if (left_xnode == -1) left_xnode = nxnodes - 1;
if (left_ynode == -1) left_ynode = nynodes - 1;
if (left_znode == -1) left_znode = nznodes - 1;
double T_i = T_electron[ixnode][iynode][iznode];
double T_ir = T_electron[right_xnode][iynode][iznode];
double T_iu = T_electron[ixnode][right_ynode][iznode];
double T_if = T_electron[ixnode][iynode][right_znode];
double C_i = el_properties(T_electron[ixnode][iynode][iznode]).el_heat_capacity;
double C_ir = el_properties(T_electron[right_xnode][iynode][iznode]).el_heat_capacity;
double C_iu = el_properties(T_electron[ixnode][right_ynode][iznode]).el_heat_capacity;
double C_if = el_properties(T_electron[ixnode][iynode][right_znode]).el_heat_capacity;
double diff_x = (x_at - x_surf)*(x_at - x_surf);
diff_x = pow(diff_x,0.5);
double len_factor = diff_x/(diff_x+free_path);
if (movsur == 1){
if (x_at >= x_surf){
flangevin[i][0] -= pres_factor/ionic_density*((C_ir*T_ir*free_path/(diff_x+free_path)/(diff_x+free_path)) +
(len_factor/dx)*(C_ir*T_ir-C_i*T_i));
flangevin[i][1] -= pres_factor/ionic_density/dy*(C_iu*T_iu-C_i*T_i);
flangevin[i][2] -= pres_factor/ionic_density/dz*(C_if*T_if-C_i*T_i);
}
}
else{
flangevin[i][0] -= pres_factor/ionic_density/dx*(C_ir*T_ir-C_i*T_i);
flangevin[i][1] -= pres_factor/ionic_density/dy*(C_iu*T_iu-C_i*T_i);
flangevin[i][2] -= pres_factor/ionic_density/dz*(C_if*T_if-C_i*T_i);
}
f[i][0] += flangevin[i][0];
f[i][1] += flangevin[i][1];
f[i][2] += flangevin[i][2];
}
}
if (movsur == 1){
if (ixnode < surface_l){
t_surface_l = ixnode;
}
}
}
}
MPI_Allreduce(&t_surface_l,&surface_l,1,MPI_INT,MPI_MIN,world);
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::post_force_setup(int vflag)
{
double **f = atom->f;
int *mask = atom->mask;
int nlocal = atom->nlocal;
// apply langevin forces that have been stored from previous run
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
f[i][0] += flangevin[i][0];
f[i][1] += flangevin[i][1];
f[i][2] += flangevin[i][2];
}
}
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::post_force_respa(int vflag, int ilevel, int iloop)
{
if (ilevel == nlevels_respa-1) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::post_force_respa_setup(int vflag, int ilevel, int iloop)
{
if (ilevel == nlevels_respa-1) post_force_setup(vflag);
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::reset_dt()
{
for (int i = 1; i <= atom->ntypes; i++)
gfactor2[i] =
sqrt(24.0*force->boltz*gamma_p/update->dt/force->mvv2e) / force->ftm2v;
}
/* ----------------------------------------------------------------------
read in initial electron temperatures from a user-specified file
only called by proc 0
------------------------------------------------------------------------- */
void FixTTMMod::read_initial_electron_temperatures(FILE *fpr)
{
char line[MAXLINE];
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_initial_set[ixnode][iynode][iznode] = 0;
// read initial electron temperature values from file
int ixnode,iynode,iznode;
double T_tmp;
while (1) {
if (fgets(line,MAXLINE,fpr) == NULL) break;
sscanf(line,"%d %d %d %lg",&ixnode,&iynode,&iznode,&T_tmp);
if (T_tmp < 0.0) error->one(FLERR,"Fix ttm/mod electron temperatures must be >= 0.0");
T_electron[ixnode][iynode][iznode] = T_tmp;
T_initial_set[ixnode][iynode][iznode] = 1;
}
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
if (T_initial_set[ixnode][iynode][iznode] == 0)
error->one(FLERR,"Initial temperatures not all set in fix ttm/mod");
}
/* ---------------------------------------------------------------------- */
el_heat_capacity_thermal_conductivity FixTTMMod::el_properties(double T_e)
{
el_heat_capacity_thermal_conductivity properties;
double T_temp = T_e/1000.0, T_reduced = T_damp*T_temp;
double T2 = T_temp*T_temp;
double T3 = T2*T_temp;
double T4 = T3*T_temp;
double poly = esheat_0 + esheat_1*T_temp + esheat_2*T2 + esheat_3*T3 + esheat_4*T4;
properties.el_heat_capacity = electronic_density*(poly*exp(-T_reduced*T_reduced) + C_limit); // heat capacity
properties.el_thermal_conductivity = el_th_diff*properties.el_heat_capacity; // thermal conductivity
return properties;
}
double FixTTMMod::el_sp_heat_integral(double T_e)
{
double T_temp = T_e/1000.0, T_reduced = T_damp*T_temp;
if (T_damp != 0)
return electronic_density*(MY_PIS*(3*esheat_4/pow(T_damp,5)+2*esheat_2/pow(T_damp,3)+4*esheat_0/T_damp)*erf(T_reduced)+
4*esheat_3/pow(T_damp,4)+4*esheat_1/T_damp/T_damp-
((6*esheat_4*T_temp+4*esheat_3)/pow(T_damp,4)+
(4*esheat_1+4*esheat_4*pow(T_temp,3)+4*esheat_3*T_temp*T_temp+4*esheat_2*T_temp)/T_damp/T_damp)*exp(-T_reduced*T_reduced))*125.0+electronic_density*C_limit*T_e;
else
return electronic_density*((esheat_0 + C_limit)*T_e + esheat_1*T_temp*T_e/2.0 + esheat_2*T_temp*T_temp*T_e/3.0 + esheat_3*pow(T_temp,3)*T_e/4.0 + esheat_4*pow(T_temp,4)*T_e/5.0);
}
void FixTTMMod::end_of_step()
{
double **x = atom->x;
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (movsur == 1){
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++){
double TTT = T_electron[ixnode][iynode][iznode];
if (TTT > 0){
if (ixnode < t_surface_l)
t_surface_l = ixnode;
}
}
}
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
net_energy_transfer[ixnode][iynode][iznode] = 0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
double xscale = (x[i][0] - domain->boxlo[0])/domain->xprd;
double yscale = (x[i][1] - domain->boxlo[1])/domain->yprd;
double zscale = (x[i][2] - domain->boxlo[2])/domain->zprd;
int ixnode = static_cast<int>(xscale*nxnodes);
int iynode = static_cast<int>(yscale*nynodes);
int iznode = static_cast<int>(zscale*nznodes);
while (ixnode > nxnodes-1) ixnode -= nxnodes;
while (iynode > nynodes-1) iynode -= nynodes;
while (iznode > nznodes-1) iznode -= nznodes;
while (ixnode < 0) ixnode += nxnodes;
while (iynode < 0) iynode += nynodes;
while (iznode < 0) iznode += nznodes;
if (ixnode >= t_surface_l){
if (ixnode < surface_r)
net_energy_transfer[ixnode][iynode][iznode] +=
(flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] +
flangevin[i][2]*v[i][2]);
}
}
MPI_Allreduce(&net_energy_transfer[0][0][0],
&net_energy_transfer_all[0][0][0],
total_nnodes,MPI_DOUBLE,MPI_SUM,world);
double dx = domain->xprd/nxnodes;
double dy = domain->yprd/nynodes;
double dz = domain->zprd/nznodes;
double del_vol = dx*dy*dz;
double el_specific_heat = 0.0;
double el_thermal_conductivity = el_properties(electron_temperature_min).el_thermal_conductivity;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
{
if (el_properties(T_electron[ixnode][iynode][iznode]).el_thermal_conductivity > el_thermal_conductivity)
el_thermal_conductivity = el_properties(T_electron[ixnode][iynode][iznode]).el_thermal_conductivity;
if (el_specific_heat > 0.0)
{
if ((T_electron[ixnode][iynode][iznode] > 0.0) && (el_properties(T_electron[ixnode][iynode][iznode]).el_heat_capacity < el_specific_heat))
el_specific_heat = el_properties(T_electron[ixnode][iynode][iznode]).el_heat_capacity;
}
else if (T_electron[ixnode][iynode][iznode] > 0.0) el_specific_heat = el_properties(T_electron[ixnode][iynode][iznode]).el_heat_capacity;
}
// num_inner_timesteps = # of inner steps (thermal solves)
// required this MD step to maintain a stable explicit solve
int num_inner_timesteps = 1;
double inner_dt = update->dt;
double stability_criterion = 0.0;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_electron_first[ixnode][iynode][iznode] =
T_electron[ixnode][iynode][iznode];
do {
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_electron[ixnode][iynode][iznode] =
T_electron_first[ixnode][iynode][iznode];
stability_criterion = 1.0 -
2.0*inner_dt/el_specific_heat *
(el_thermal_conductivity*(1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz));
if (stability_criterion < 0.0) {
inner_dt = 0.25*el_specific_heat /
(el_thermal_conductivity*(1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz));
}
num_inner_timesteps = static_cast<unsigned int>(update->dt/inner_dt) + 1;
inner_dt = update->dt/double(num_inner_timesteps);
if (num_inner_timesteps > 1000000)
error->warning(FLERR,"Too many inner timesteps in fix ttm/mod",0);
for (int ith_inner_timestep = 0; ith_inner_timestep < num_inner_timesteps;
ith_inner_timestep++) {
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_electron_old[ixnode][iynode][iznode] =
T_electron[ixnode][iynode][iznode];
// compute new electron T profile
duration = duration + inner_dt;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
int right_xnode = ixnode + 1;
int right_ynode = iynode + 1;
int right_znode = iznode + 1;
if (right_xnode == nxnodes) right_xnode = 0;
if (right_ynode == nynodes) right_ynode = 0;
if (right_znode == nznodes) right_znode = 0;
int left_xnode = ixnode - 1;
int left_ynode = iynode - 1;
int left_znode = iznode - 1;
if (left_xnode == -1) left_xnode = nxnodes - 1;
if (left_ynode == -1) left_ynode = nynodes - 1;
if (left_znode == -1) left_znode = nznodes - 1;
double skin_layer_d = double(skin_layer);
double ixnode_d = double(ixnode);
double surface_d = double(t_surface_l);
mult_factor = 0.0;
if (duration < width){
if (ixnode >= t_surface_l) mult_factor = (intensity/(dx*skin_layer_d))*exp((-1.0)*(ixnode_d - surface_d)/skin_layer_d);
}
if (ixnode < t_surface_l) net_energy_transfer_all[ixnode][iynode][iznode] = 0.0;
double cr_vac = 1;
if (T_electron_old[ixnode][iynode][iznode] == 0) cr_vac = 0;
double cr_v_l_x = 1;
if (T_electron_old[left_xnode][iynode][iznode] == 0) cr_v_l_x = 0;
double cr_v_r_x = 1;
if (T_electron_old[right_xnode][iynode][iznode] == 0) cr_v_r_x = 0;
double cr_v_l_y = 1;
if (T_electron_old[ixnode][left_ynode][iznode] == 0) cr_v_l_y = 0;
double cr_v_r_y = 1;
if (T_electron_old[ixnode][right_ynode][iznode] == 0) cr_v_r_y = 0;
double cr_v_l_z = 1;
if (T_electron_old[ixnode][iynode][left_znode] == 0) cr_v_l_z = 0;
double cr_v_r_z = 1;
if (T_electron_old[ixnode][iynode][right_znode] == 0) cr_v_r_z = 0;
if (cr_vac != 0) {
T_electron[ixnode][iynode][iznode] =
T_electron_old[ixnode][iynode][iznode] +
inner_dt/el_properties(T_electron_old[ixnode][iynode][iznode]).el_heat_capacity *
((cr_v_r_x*el_properties(T_electron_old[ixnode][iynode][iznode]/2.0+T_electron_old[right_xnode][iynode][iznode]/2.0).el_thermal_conductivity*
(T_electron_old[right_xnode][iynode][iznode]-T_electron_old[ixnode][iynode][iznode])/dx -
cr_v_l_x*el_properties(T_electron_old[ixnode][iynode][iznode]/2.0+T_electron_old[left_xnode][iynode][iznode]/2.0).el_thermal_conductivity*
(T_electron_old[ixnode][iynode][iznode]-T_electron_old[left_xnode][iynode][iznode])/dx)/dx +
(cr_v_r_y*el_properties(T_electron_old[ixnode][iynode][iznode]/2.0+T_electron_old[ixnode][right_ynode][iznode]/2.0).el_thermal_conductivity*
(T_electron_old[ixnode][right_ynode][iznode]-T_electron_old[ixnode][iynode][iznode])/dy -
cr_v_l_y*el_properties(T_electron_old[ixnode][iynode][iznode]/2.0+T_electron_old[ixnode][left_ynode][iznode]/2.0).el_thermal_conductivity*
(T_electron_old[ixnode][iynode][iznode]-T_electron_old[ixnode][left_ynode][iznode])/dy)/dy +
(cr_v_r_z*el_properties(T_electron_old[ixnode][iynode][iznode]/2.0+T_electron_old[ixnode][iynode][right_znode]/2.0).el_thermal_conductivity*
(T_electron_old[ixnode][iynode][right_znode]-T_electron_old[ixnode][iynode][iznode])/dz -
cr_v_l_z*el_properties(T_electron_old[ixnode][iynode][iznode]/2.0+T_electron_old[ixnode][iynode][left_znode]/2.0).el_thermal_conductivity*
(T_electron_old[ixnode][iynode][iznode]-T_electron_old[ixnode][iynode][left_znode])/dz)/dz);
T_electron[ixnode][iynode][iznode]+=inner_dt/el_properties(T_electron[ixnode][iynode][iznode]).el_heat_capacity*
(mult_factor -
net_energy_transfer_all[ixnode][iynode][iznode]/del_vol);
}
else T_electron[ixnode][iynode][iznode] =
T_electron_old[ixnode][iynode][iznode];
if ((T_electron[ixnode][iynode][iznode] > 0.0) && (T_electron[ixnode][iynode][iznode] < electron_temperature_min))
T_electron[ixnode][iynode][iznode] = T_electron[ixnode][iynode][iznode] + 0.5*(electron_temperature_min - T_electron[ixnode][iynode][iznode]);
if (el_properties(T_electron[ixnode][iynode][iznode]).el_thermal_conductivity > el_thermal_conductivity)
el_thermal_conductivity = el_properties(T_electron[ixnode][iynode][iznode]).el_thermal_conductivity;
if ((T_electron[ixnode][iynode][iznode] > 0.0) && (el_properties(T_electron[ixnode][iynode][iznode]).el_heat_capacity < el_specific_heat))
el_specific_heat = el_properties(T_electron[ixnode][iynode][iznode]).el_heat_capacity;
}
}
stability_criterion = 1.0 -
2.0*inner_dt/el_specific_heat *
(el_thermal_conductivity*(1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz));
} while (stability_criterion < 0.0);
// output nodal temperatures for current timestep
if ((nfileevery) && !(update->ntimestep % nfileevery)) {
// compute atomic Ta for each grid point
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
nsum[ixnode][iynode][iznode] = 0;
nsum_all[ixnode][iynode][iznode] = 0;
sum_vsq[ixnode][iynode][iznode] = 0.0;
sum_mass_vsq[ixnode][iynode][iznode] = 0.0;
sum_vsq_all[ixnode][iynode][iznode] = 0.0;
sum_mass_vsq_all[ixnode][iynode][iznode] = 0.0;
}
double massone;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
if (rmass) massone = rmass[i];
else massone = mass[type[i]];
double xscale = (x[i][0] - domain->boxlo[0])/domain->xprd;
double yscale = (x[i][1] - domain->boxlo[1])/domain->yprd;
double zscale = (x[i][2] - domain->boxlo[2])/domain->zprd;
int ixnode = static_cast<int>(xscale*nxnodes);
int iynode = static_cast<int>(yscale*nynodes);
int iznode = static_cast<int>(zscale*nznodes);
while (ixnode > nxnodes-1) ixnode -= nxnodes;
while (iynode > nynodes-1) iynode -= nynodes;
while (iznode > nznodes-1) iznode -= nznodes;
while (ixnode < 0) ixnode += nxnodes;
while (iynode < 0) iynode += nynodes;
while (iznode < 0) iznode += nznodes;
double vsq = v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2];
nsum[ixnode][iynode][iznode] += 1;
sum_vsq[ixnode][iynode][iznode] += vsq;
sum_mass_vsq[ixnode][iynode][iznode] += massone*vsq;
}
MPI_Allreduce(&nsum[0][0][0],&nsum_all[0][0][0],total_nnodes,
MPI_INT,MPI_SUM,world);
MPI_Allreduce(&sum_vsq[0][0][0],&sum_vsq_all[0][0][0],total_nnodes,
MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&sum_mass_vsq[0][0][0],&sum_mass_vsq_all[0][0][0],
total_nnodes,MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&t_surface_l,&surface_l,
1,MPI_INT,MPI_MIN,world);
if (me == 0) {
fprintf(fp,BIGINT_FORMAT,update->ntimestep);
double T_a;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
T_a = 0;
if (nsum_all[ixnode][iynode][iznode] > 0){
T_a = sum_mass_vsq_all[ixnode][iynode][iznode]/
(3.0*force->boltz*nsum_all[ixnode][iynode][iznode]/force->mvv2e);
if (movsur == 1){
if (T_electron[ixnode][iynode][iznode]==0.0) T_electron[ixnode][iynode][iznode] = electron_temperature_min;
}
}
fprintf(fp," %f",T_a);
}
fprintf(fp,"\t");
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
fprintf(fp,"%f ",T_electron[ixnode][iynode][iznode]);
fprintf(fp,"\n");
}
}
}
/* ----------------------------------------------------------------------
memory usage of 3d grid
------------------------------------------------------------------------- */
double FixTTMMod::memory_usage()
{
double bytes = 0.0;
bytes += 5*total_nnodes * sizeof(int);
bytes += 14*total_nnodes * sizeof(double);
return bytes;
}
/* ---------------------------------------------------------------------- */
void FixTTMMod::grow_arrays(int ngrow)
{
memory->grow(flangevin,ngrow,3,"ttm/mod:flangevin");
}
/* ----------------------------------------------------------------------
return the energy of the electronic subsystem or the net_energy transfer
between the subsystems
------------------------------------------------------------------------- */
double FixTTMMod::compute_vector(int n)
{
double e_energy = 0.0;
double transfer_energy = 0.0;
double dx = domain->xprd/nxnodes;
double dy = domain->yprd/nynodes;
double dz = domain->zprd/nznodes;
double del_vol = dx*dy*dz;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++) {
e_energy += el_sp_heat_integral(T_electron[ixnode][iynode][iznode])*del_vol;
transfer_energy +=
net_energy_transfer_all[ixnode][iynode][iznode]*update->dt;
}
if (n == 0) return e_energy;
if (n == 1) return transfer_energy;
return 0.0;
}
/* ----------------------------------------------------------------------
pack entire state of Fix into one write
------------------------------------------------------------------------- */
void FixTTMMod::write_restart(FILE *fp)
{
double *rlist;
memory->create(rlist,nxnodes*nynodes*nznodes+1,"ttm/mod:rlist");
int n = 0;
rlist[n++] = seed;
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
rlist[n++] = T_electron[ixnode][iynode][iznode];
if (comm->me == 0) {
int size = n * sizeof(double);
fwrite(&size,sizeof(int),1,fp);
fwrite(rlist,sizeof(double),n,fp);
}
memory->destroy(rlist);
}
/* ----------------------------------------------------------------------
use state info from restart file to restart the Fix
------------------------------------------------------------------------- */
void FixTTMMod::restart(char *buf)
{
int n = 0;
double *rlist = (double *) buf;
// the seed must be changed from the initial seed
seed = static_cast<int> (0.5*rlist[n++]);
for (int ixnode = 0; ixnode < nxnodes; ixnode++)
for (int iynode = 0; iynode < nynodes; iynode++)
for (int iznode = 0; iznode < nznodes; iznode++)
T_electron[ixnode][iynode][iznode] = rlist[n++];
delete random;
random = new RanMars(lmp,seed+comm->me);
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for restart file
------------------------------------------------------------------------- */
int FixTTMMod::pack_restart(int i, double *buf)
{
buf[0] = 4;
buf[1] = flangevin[i][0];
buf[2] = flangevin[i][1];
buf[3] = flangevin[i][2];
return 4;
}
/* ----------------------------------------------------------------------
unpack values from atom->extra array to restart the fix
------------------------------------------------------------------------- */
void FixTTMMod::unpack_restart(int nlocal, int nth)
{
double **extra = atom->extra;
// skip to Nth set of extra values
int m = 0;
for (int i = 0; i < nth; i++) m += static_cast<int> (extra[nlocal][m]);
m++;
flangevin[nlocal][0] = extra[nlocal][m++];
flangevin[nlocal][1] = extra[nlocal][m++];
flangevin[nlocal][2] = extra[nlocal][m++];
}
/* ----------------------------------------------------------------------
maxsize of any atom's restart data
------------------------------------------------------------------------- */
int FixTTMMod::maxsize_restart()
{
return 4;
}
/* ----------------------------------------------------------------------
size of atom nlocal's restart data
------------------------------------------------------------------------- */
int FixTTMMod::size_restart(int nlocal)
{
return 4;
}
Event Timeline
Log In to Comment