Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90571914
phasefield_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 2, 21:23
Size
13 KB
Mime Type
text/x-c++
Expires
Mon, Nov 4, 21:23 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22052816
Attached To
rAKA akantu
phasefield_inline_impl.hh
View Options
/**
* @file phasefield_inline_impl.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Fri Jun 19 2020
* @date last modification: Fri Apr 02 2021
*
* @brief Phase field implementation of inline functions
*
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "phase_field_model.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_PHASEFIELD_INLINE_IMPL_HH__
#define __AKANTU_PHASEFIELD_INLINE_IMPL_HH__
namespace
akantu
{
/* -------------------------------------------------------------------------- */
inline
Int
PhaseField
::
addElement
(
const
ElementType
&
type
,
Idx
element
,
const
GhostType
&
ghost_type
)
{
Array
<
Int
>
&
el_filter
=
this
->
element_filter
(
type
,
ghost_type
);
el_filter
.
push_back
(
element
);
return
el_filter
.
size
()
-
1
;
}
/* -------------------------------------------------------------------------- */
inline
Int
PhaseField
::
addElement
(
const
Element
&
element
)
{
return
this
->
addElement
(
element
.
type
,
element
.
element
,
element
.
ghost_type
);
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
PhaseField
::
registerInternal
<
Real
>
(
InternalPhaseField
<
Real
>
&
vect
)
{
internal_vectors_real
[
vect
.
getID
()]
=
&
vect
;
}
template
<>
inline
void
PhaseField
::
registerInternal
<
Int
>
(
InternalPhaseField
<
Int
>
&
vect
)
{
internal_vectors_int
[
vect
.
getID
()]
=
&
vect
;
}
template
<>
inline
void
PhaseField
::
registerInternal
<
bool
>
(
InternalPhaseField
<
bool
>
&
vect
)
{
internal_vectors_bool
[
vect
.
getID
()]
=
&
vect
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
PhaseField
::
unregisterInternal
<
Real
>
(
InternalPhaseField
<
Real
>
&
vect
)
{
internal_vectors_real
.
erase
(
vect
.
getID
());
}
template
<>
inline
void
PhaseField
::
unregisterInternal
<
Int
>
(
InternalPhaseField
<
Int
>
&
vect
)
{
internal_vectors_int
.
erase
(
vect
.
getID
());
}
template
<>
inline
void
PhaseField
::
unregisterInternal
<
bool
>
(
InternalPhaseField
<
bool
>
&
vect
)
{
internal_vectors_bool
.
erase
(
vect
.
getID
());
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
bool
PhaseField
::
isInternal
(
__attribute__
((
unused
))
const
ID
&
id
,
__attribute__
((
unused
))
const
ElementKind
&
element_kind
)
const
{
AKANTU_TO_IMPLEMENT
();
}
template
<>
inline
bool
PhaseField
::
isInternal
<
Real
>
(
const
ID
&
id
,
const
ElementKind
&
element_kind
)
const
{
auto
internal_array
=
internal_vectors_real
.
find
(
this
->
getID
()
+
":"
+
id
);
return
!
(
internal_array
==
internal_vectors_real
.
end
()
||
internal_array
->
second
->
getElementKind
()
!=
element_kind
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
PhaseField
::
flattenInternal
(
const
std
::
string
&
field_id
,
ElementTypeMapArray
<
T
>
&
internal_flat
,
const
GhostType
ghost_type
,
ElementKind
element_kind
)
const
{
if
(
!
this
->
template
isInternal
<
T
>
(
field_id
,
element_kind
))
{
AKANTU_EXCEPTION
(
"Cannot find internal field "
<<
id
<<
" in phasefield "
<<
this
->
name
);
}
const
InternalPhaseField
<
T
>
&
internal_field
=
this
->
template
getInternal
<
T
>
(
field_id
);
const
FEEngine
&
fe_engine
=
internal_field
.
getFEEngine
();
const
Mesh
&
mesh
=
fe_engine
.
getMesh
();
for
(
auto
&&
type
:
internal_field
.
filterTypes
(
ghost_type
))
{
const
auto
&
src_vect
=
internal_field
(
type
,
ghost_type
);
const
auto
&
filter
=
internal_field
.
getFilter
(
type
,
ghost_type
);
// total number of elements in the corresponding mesh
Int
nb_element_dst
=
mesh
.
getNbElement
(
type
,
ghost_type
);
// number of quadrature points per elem
Int
nb_quad_per_elem
=
fe_engine
.
getNbIntegrationPoints
(
type
);
// number of data per quadrature point
Int
nb_data_per_quad
=
internal_field
.
getNbComponent
();
if
(
!
internal_flat
.
exists
(
type
,
ghost_type
))
{
internal_flat
.
alloc
(
nb_element_dst
*
nb_quad_per_elem
,
nb_data_per_quad
,
type
,
ghost_type
);
}
// number of data per element
Int
nb_data
=
nb_quad_per_elem
*
nb_data_per_quad
;
Array
<
Real
>
&
dst_vect
=
internal_flat
(
type
,
ghost_type
);
dst_vect
.
resize
(
nb_element_dst
*
nb_quad_per_elem
);
auto
it_dst
=
make_view
(
dst_vect
,
nb_data
).
begin
();
for
(
auto
&&
data
:
zip
(
filter
,
make_view
(
src_vect
,
nb_data
)))
{
it_dst
[
std
::
get
<
0
>
(
data
)]
=
std
::
get
<
1
>
(
data
);
}
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
PhaseField
::
inflateInternal
(
const
std
::
string
&
field_id
,
const
ElementTypeMapArray
<
T
>
&
field
,
GhostType
ghost_type
,
ElementKind
element_kind
)
{
if
(
!
this
->
template
isInternal
<
T
>
(
field_id
,
element_kind
))
{
AKANTU_EXCEPTION
(
"Cannot find internal field "
<<
id
<<
" in phasefield "
<<
this
->
name
);
}
InternalPhaseField
<
T
>
&
internal_field
=
this
->
template
getInternal
<
T
>
(
field_id
);
const
FEEngine
&
fe_engine
=
internal_field
.
getFEEngine
();
for
(
auto
&&
type
:
field
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
if
(
not
internal_field
.
exists
(
type
,
ghost_type
))
{
continue
;
}
const
auto
&
filter
=
internal_field
.
getFilter
(
type
,
ghost_type
);
const
auto
&
src_array
=
field
(
type
,
ghost_type
);
auto
&
dest_array
=
internal_field
(
type
,
ghost_type
);
auto
nb_quad_per_elem
=
fe_engine
.
getNbIntegrationPoints
(
type
);
auto
nb_component
=
src_array
.
getNbComponent
();
AKANTU_DEBUG_ASSERT
(
field
.
size
()
==
fe_engine
.
getMesh
().
getNbElement
(
type
,
ghost_type
)
*
nb_quad_per_elem
,
"The ElementTypeMapArray to inflate is not of the proper size"
);
AKANTU_DEBUG_ASSERT
(
dest_array
.
getNbComponent
()
==
nb_component
,
"The ElementTypeMapArray has not the proper number of components"
);
auto
src
=
make_view
(
field
(
type
,
ghost_type
),
nb_component
,
nb_quad_per_elem
)
.
begin
();
for
(
auto
&&
data
:
zip
(
filter
,
make_view
(
dest_array
,
nb_component
,
nb_quad_per_elem
)))
{
std
::
get
<
1
>
(
data
)
=
src
[
std
::
get
<
0
>
(
data
)];
}
}
}
/* -------------------------------------------------------------------------- */
inline
Int
PhaseField
::
getNbData
(
__attribute__
((
unused
))
const
Array
<
Element
>
&
elements
,
__attribute__
((
unused
))
const
SynchronizationTag
&
tag
)
const
{
return
0
;
}
/* -------------------------------------------------------------------------- */
inline
void
PhaseField
::
packData
(
__attribute__
((
unused
))
CommunicationBuffer
&
buffer
,
__attribute__
((
unused
))
const
Array
<
Element
>
&
elements
,
__attribute__
((
unused
))
const
SynchronizationTag
&
tag
)
const
{}
/* -------------------------------------------------------------------------- */
inline
void
PhaseField
::
unpackData
(
__attribute__
((
unused
))
CommunicationBuffer
&
buffer
,
__attribute__
((
unused
))
const
Array
<
Element
>
&
elements
,
__attribute__
((
unused
))
const
SynchronizationTag
&
tag
)
{
}
/* -------------------------------------------------------------------------- */
inline
const
Parameter
&
PhaseField
::
getParam
(
const
ID
&
param
)
const
{
try
{
return
get
(
param
);
}
catch
(...)
{
AKANTU_EXCEPTION
(
"No parameter "
<<
param
<<
" in the phasefield "
<<
getID
());
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
void
PhaseField
::
packElementDataHelper
(
const
ElementTypeMapArray
<
T
>
&
data_to_pack
,
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
ID
&
fem_id
)
const
{
DataAccessor
::
packElementalDataHelper
<
T
>
(
data_to_pack
,
buffer
,
elements
,
true
,
model
.
getFEEngine
(
fem_id
));
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
void
PhaseField
::
unpackElementDataHelper
(
ElementTypeMapArray
<
T
>
&
data_to_unpack
,
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
ID
&
fem_id
)
{
DataAccessor
::
unpackElementalDataHelper
<
T
>
(
data_to_unpack
,
buffer
,
elements
,
true
,
model
.
getFEEngine
(
fem_id
));
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
const
InternalPhaseField
<
T
>
&
PhaseField
::
getInternal
([[
gnu
::
unused
]]
const
ID
&
int_id
)
const
{
AKANTU_TO_IMPLEMENT
();
return
NULL
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
InternalPhaseField
<
T
>
&
PhaseField
::
getInternal
([[
gnu
::
unused
]]
const
ID
&
int_id
)
{
AKANTU_TO_IMPLEMENT
();
return
NULL
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
const
InternalPhaseField
<
Real
>
&
PhaseField
::
getInternal
(
const
ID
&
int_id
)
const
{
auto
it
=
internal_vectors_real
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_real
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The phasefield "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
InternalPhaseField
<
Real
>
&
PhaseField
::
getInternal
(
const
ID
&
int_id
)
{
auto
it
=
internal_vectors_real
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_real
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The phasefield "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
const
InternalPhaseField
<
Int
>
&
PhaseField
::
getInternal
(
const
ID
&
int_id
)
const
{
auto
it
=
internal_vectors_int
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_int
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The phasefield "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
template
<>
inline
InternalPhaseField
<
Int
>
&
PhaseField
::
getInternal
(
const
ID
&
int_id
)
{
auto
it
=
internal_vectors_int
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_int
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The phasefield "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
const
Array
<
T
>
&
PhaseField
::
getArray
(
const
ID
&
vect_id
,
ElementType
type
,
GhostType
ghost_type
)
const
{
try
{
return
this
->
template
getInternal
<
T
>
(
vect_id
)(
type
,
ghost_type
);
}
catch
(
debug
::
Exception
&
e
)
{
AKANTU_SILENT_EXCEPTION
(
"The phasefield "
<<
name
<<
"("
<<
getID
()
<<
") does not contain a vector "
<<
vect_id
<<
" ["
<<
e
<<
"]"
);
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
Array
<
T
>
&
PhaseField
::
getArray
(
const
ID
&
vect_id
,
ElementType
type
,
GhostType
ghost_type
)
{
try
{
return
this
->
template
getInternal
<
T
>
(
vect_id
)(
type
,
ghost_type
);
}
catch
(
debug
::
Exception
&
e
)
{
AKANTU_SILENT_EXCEPTION
(
"The phasefield "
<<
name
<<
"("
<<
getID
()
<<
") does not contain a vector "
<<
vect_id
<<
" ["
<<
e
<<
"]"
);
}
}
}
// namespace akantu
#endif
Event Timeline
Log In to Comment