Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90792446
aka_array_tmpl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 19:44
Size
47 KB
Mime Type
text/x-c++
Expires
Wed, Nov 6, 19:44 (1 d, 20 h)
Engine
blob
Format
Raw Data
Handle
22132318
Attached To
rAKA akantu
aka_array_tmpl.hh
View Options
/**
* @file aka_array_tmpl.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Thu Jul 15 2010
* @date last modification: Tue Feb 20 2018
*
* @brief Inline functions of the classes Array<T> and ArrayBase
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
/* Inline Functions Array<T> */
/* -------------------------------------------------------------------------- */
#include "aka_array.hh"
/* -------------------------------------------------------------------------- */
#include <memory>
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_AKA_ARRAY_TMPL_HH__
#define __AKANTU_AKA_ARRAY_TMPL_HH__
namespace
akantu
{
namespace
debug
{
struct
ArrayException
:
public
Exception
{};
}
// namespace debug
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
ArrayDataLayer
<
T
,
allocation_trait
>::
ArrayDataLayer
(
UInt
size
,
UInt
nb_component
,
const
ID
&
id
)
:
ArrayBase
(
id
)
{
allocate
(
size
,
nb_component
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
ArrayDataLayer
<
T
,
allocation_trait
>::
ArrayDataLayer
(
UInt
size
,
UInt
nb_component
,
const_reference
value
,
const
ID
&
id
)
:
ArrayBase
(
id
)
{
allocate
(
size
,
nb_component
,
value
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
ArrayDataLayer
<
T
,
allocation_trait
>::
ArrayDataLayer
(
const
ArrayDataLayer
&
vect
,
const
ID
&
id
)
:
ArrayBase
(
vect
,
id
)
{
this
->
data_storage
=
vect
.
data_storage
;
this
->
size_
=
vect
.
size_
;
this
->
nb_component
=
vect
.
nb_component
;
this
->
values
=
this
->
data_storage
.
data
();
}
#ifndef SWIG
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
ArrayDataLayer
<
T
,
allocation_trait
>::
ArrayDataLayer
(
const
std
::
vector
<
value_type
>
&
vect
)
{
this
->
data_storage
=
vect
;
this
->
size_
=
vect
.
size
();
this
->
nb_component
=
1
;
this
->
values
=
this
->
data_storage
.
data
();
}
#endif
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
ArrayDataLayer
<
T
,
allocation_trait
>
&
ArrayDataLayer
<
T
,
allocation_trait
>::
operator
=
(
const
ArrayDataLayer
&
other
)
{
if
(
this
!=
&
other
)
{
this
->
data_storage
=
other
.
data_storage
;
this
->
nb_component
=
other
.
nb_component
;
this
->
size_
=
other
.
size_
;
this
->
values
=
this
->
data_storage
.
data
();
}
return
*
this
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
ArrayDataLayer
<
T
,
allocation_trait
>::
ArrayDataLayer
(
ArrayDataLayer
&&
other
)
=
default
;
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
ArrayDataLayer
<
T
,
allocation_trait
>
&
ArrayDataLayer
<
T
,
allocation_trait
>::
operator
=
(
ArrayDataLayer
&&
other
)
=
default
;
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
void
ArrayDataLayer
<
T
,
allocation_trait
>::
allocate
(
UInt
new_size
,
UInt
nb_component
)
{
this
->
nb_component
=
nb_component
;
this
->
resize
(
new_size
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
void
ArrayDataLayer
<
T
,
allocation_trait
>::
allocate
(
UInt
new_size
,
UInt
nb_component
,
const
T
&
val
)
{
this
->
nb_component
=
nb_component
;
this
->
resize
(
new_size
,
val
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
void
ArrayDataLayer
<
T
,
allocation_trait
>::
resize
(
UInt
new_size
)
{
this
->
data_storage
.
resize
(
new_size
*
this
->
nb_component
);
this
->
values
=
this
->
data_storage
.
data
();
this
->
size_
=
new_size
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
void
ArrayDataLayer
<
T
,
allocation_trait
>::
resize
(
UInt
new_size
,
const
T
&
value
)
{
this
->
data_storage
.
resize
(
new_size
*
this
->
nb_component
,
value
);
this
->
values
=
this
->
data_storage
.
data
();
this
->
size_
=
new_size
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
void
ArrayDataLayer
<
T
,
allocation_trait
>::
reserve
(
UInt
size
,
UInt
new_size
)
{
if
(
new_size
!=
UInt
(
-
1
))
{
this
->
data_storage
.
resize
(
new_size
*
this
->
nb_component
);
}
this
->
data_storage
.
reserve
(
size
*
this
->
nb_component
);
this
->
values
=
this
->
data_storage
.
data
();
}
/* -------------------------------------------------------------------------- */
/**
* append a tuple to the array with the value value for all components
* @param value the new last tuple or the array will contain nb_component copies
* of value
*/
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
inline
void
ArrayDataLayer
<
T
,
allocation_trait
>::
push_back
(
const
T
&
value
)
{
this
->
data_storage
.
push_back
(
value
);
this
->
values
=
this
->
data_storage
.
data
();
this
->
size_
+=
1
;
}
/* -------------------------------------------------------------------------- */
#ifndef SWIG
/**
* append a matrix or a vector to the array
* @param new_elem a reference to a Matrix<T> or Vector<T> */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
template
<
template
<
typename
>
class
C
,
typename
>
inline
void
ArrayDataLayer
<
T
,
allocation_trait
>::
push_back
(
const
C
<
T
>
&
new_elem
)
{
AKANTU_DEBUG_ASSERT
(
nb_component
==
new_elem
.
size
(),
"The vector("
<<
new_elem
.
size
()
<<
") as not a size compatible with the Array (nb_component="
<<
nb_component
<<
")."
);
for
(
UInt
i
=
0
;
i
<
new_elem
.
size
();
++
i
)
{
this
->
data_storage
.
push_back
(
new_elem
[
i
]);
}
this
->
values
=
this
->
data_storage
.
data
();
this
->
size_
+=
1
;
}
#endif
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
inline
UInt
ArrayDataLayer
<
T
,
allocation_trait
>::
getAllocatedSize
()
const
{
return
this
->
data_storage
.
capacity
()
/
this
->
nb_component
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
ArrayAllocationType
allocation_trait
>
inline
UInt
ArrayDataLayer
<
T
,
allocation_trait
>::
getMemorySize
()
const
{
return
this
->
data_storage
.
capacity
()
*
sizeof
(
T
);
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
class
ArrayDataLayer
<
T
,
ArrayAllocationType
::
_pod
>
:
public
ArrayBase
{
public
:
using
value_type
=
T
;
using
reference
=
value_type
&
;
using
pointer_type
=
value_type
*
;
using
const_reference
=
const
value_type
&
;
public
:
virtual
~
ArrayDataLayer
()
{
deallocate
();
}
/// Allocation of a new vector
ArrayDataLayer
(
UInt
size
=
0
,
UInt
nb_component
=
1
,
const
ID
&
id
=
""
)
:
ArrayBase
(
id
)
{
allocate
(
size
,
nb_component
);
}
/// Allocation of a new vector with a default value
ArrayDataLayer
(
UInt
size
,
UInt
nb_component
,
const_reference
value
,
const
ID
&
id
=
""
)
:
ArrayBase
(
id
)
{
allocate
(
size
,
nb_component
,
value
);
}
/// Copy constructor (deep copy)
ArrayDataLayer
(
const
ArrayDataLayer
&
vect
,
const
ID
&
id
=
""
)
:
ArrayBase
(
vect
,
id
)
{
allocate
(
vect
.
size
(),
vect
.
getNbComponent
());
std
::
copy_n
(
vect
.
storage
(),
this
->
size_
*
this
->
nb_component
,
values
);
}
#ifndef SWIG
/// Copy constructor (deep copy)
explicit
ArrayDataLayer
(
const
std
::
vector
<
value_type
>
&
vect
)
{
allocate
(
vect
.
size
(),
1
);
std
::
copy_n
(
vect
.
data
(),
this
->
size_
*
this
->
nb_component
,
values
);
}
#endif
// copy operator
inline
ArrayDataLayer
&
operator
=
(
const
ArrayDataLayer
&
other
)
{
if
(
this
!=
&
other
)
{
allocate
(
other
.
size
(),
other
.
getNbComponent
());
std
::
copy_n
(
other
.
storage
(),
this
->
size_
*
this
->
nb_component
,
values
);
}
return
*
this
;
}
// move constructor
inline
ArrayDataLayer
(
ArrayDataLayer
&&
other
)
=
default
;
// move assign
inline
ArrayDataLayer
&
operator
=
(
ArrayDataLayer
&&
other
)
=
default
;
protected
:
// deallocate the memory
virtual
void
deallocate
()
{
free
(
this
->
values
);
}
// allocate the memory
virtual
inline
void
allocate
(
UInt
size
,
UInt
nb_component
)
{
if
(
size
!=
0
)
{
// malloc can return a non NULL pointer in case size is 0
this
->
values
=
static_cast
<
T
*>
(
std
::
malloc
(
nb_component
*
size
*
sizeof
(
T
)));
}
if
(
this
->
values
==
nullptr
and
size
!=
0
)
{
throw
std
::
bad_alloc
();
}
this
->
nb_component
=
nb_component
;
this
->
allocated_size
=
this
->
size_
=
size
;
}
// allocate and initialize the memory
virtual
inline
void
allocate
(
UInt
size
,
UInt
nb_component
,
const
T
&
value
)
{
allocate
(
size
,
nb_component
);
std
::
fill_n
(
values
,
size
*
nb_component
,
value
);
}
public
:
/// append a tuple of size nb_component containing value
inline
void
push_back
(
const_reference
value
)
{
resize
(
this
->
size_
+
1
,
value
);
}
#ifndef SWIG
/// append a Vector or a Matrix
template
<
template
<
typename
>
class
C
,
typename
=
std
::
enable_if_t
<
aka
::
is_tensor
<
C
<
T
>>::
value
>>
inline
void
push_back
(
const
C
<
T
>
&
new_elem
)
{
AKANTU_DEBUG_ASSERT
(
nb_component
==
new_elem
.
size
(),
"The vector("
<<
new_elem
.
size
()
<<
") as not a size compatible with the Array (nb_component="
<<
nb_component
<<
")."
);
this
->
resize
(
this
->
size_
+
1
);
std
::
copy_n
(
new_elem
.
storage
(),
new_elem
.
size
(),
values
+
this
->
nb_component
*
(
this
->
size_
-
1
));
}
#endif
/// changes the allocated size but not the size
virtual
void
reserve
(
UInt
size
,
UInt
new_size
=
UInt
(
-
1
))
{
UInt
tmp_size
=
this
->
size_
;
if
(
new_size
!=
UInt
(
-
1
))
tmp_size
=
new_size
;
this
->
resize
(
size
);
this
->
size_
=
std
::
min
(
this
->
size_
,
tmp_size
);
}
/// change the size of the Array
virtual
void
resize
(
UInt
size
)
{
if
(
size
*
this
->
nb_component
==
0
)
{
free
(
values
);
values
=
nullptr
;
this
->
allocated_size
=
0
;
}
else
{
if
(
this
->
values
==
nullptr
)
{
this
->
allocate
(
size
,
this
->
nb_component
);
return
;
}
Int
diff
=
size
-
allocated_size
;
UInt
size_to_allocate
=
(
std
::
abs
(
diff
)
>
AKANTU_MIN_ALLOCATION
)
?
size
:
(
diff
>
0
)
?
allocated_size
+
AKANTU_MIN_ALLOCATION
:
allocated_size
;
auto
*
tmp_ptr
=
reinterpret_cast
<
T
*>
(
realloc
(
this
->
values
,
size_to_allocate
*
this
->
nb_component
*
sizeof
(
T
)));
if
(
tmp_ptr
==
nullptr
)
{
throw
std
::
bad_alloc
();
}
this
->
values
=
tmp_ptr
;
this
->
allocated_size
=
size_to_allocate
;
}
this
->
size_
=
size
;
}
/// change the size of the Array and initialize the values
virtual
void
resize
(
UInt
size
,
const
T
&
val
)
{
UInt
tmp_size
=
this
->
size_
;
this
->
resize
(
size
);
if
(
size
>
tmp_size
)
{
std
::
fill_n
(
values
+
this
->
nb_component
*
tmp_size
,
(
size
-
tmp_size
)
*
this
->
nb_component
,
val
);
}
}
/// get the amount of space allocated in bytes
inline
UInt
getMemorySize
()
const
override
final
{
return
this
->
allocated_size
*
this
->
nb_component
*
sizeof
(
T
);
}
/// Get the real size allocated in memory
inline
UInt
getAllocatedSize
()
const
{
return
this
->
allocated_size
;
}
/// give the address of the memory allocated for this vector
T
*
storage
()
const
{
return
values
;
};
protected
:
/// allocation type agnostic data access
T
*
values
{
nullptr
};
UInt
allocated_size
{
0
};
};
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
/* template <class T> class AllocatorMalloc : public Allocator<T> {
public:
T * allocate(UInt size, UInt nb_component) override final {
auto * ptr = reinterpret_cast<T *>(malloc(nb_component * size * sizeof(T)));
if (ptr == nullptr and size != 0) {
throw std::bad_alloc();
}
return ptr;
}
void deallocate(T * ptr, UInt size, UInt ,
UInt nb_component) override final {
if (ptr) {
if (not is_scalar<T>::value) {
for (UInt i = 0; i < size * nb_component; ++i) {
(ptr + i)->~T();
}
}
free(ptr);
}
}
std::tuple<T *, UInt> resize(UInt new_size, UInt size, UInt allocated_size,
UInt nb_component, T * ptr) override final {
UInt size_to_alloc = 0;
if (not is_scalar<T>::value and (new_size < size)) {
for (UInt i = new_size * nb_component; i < size * nb_component; ++i) {
(ptr + i)->~T();
}
}
// free some memory
if (new_size == 0) {
free(ptr);
return std::make_tuple(nullptr, 0);
}
if (new_size <= allocated_size) {
if (allocated_size - new_size > AKANTU_MIN_ALLOCATION) {
size_to_alloc = new_size;
} else {
return std::make_tuple(ptr, allocated_size);
}
} else {
// allocate more memory
size_to_alloc = (new_size - allocated_size < AKANTU_MIN_ALLOCATION)
? allocated_size + AKANTU_MIN_ALLOCATION
: new_size;
}
auto * tmp_ptr = reinterpret_cast<T *>(
realloc(ptr, size_to_alloc * nb_component * sizeof(T)));
if (tmp_ptr == nullptr) {
throw std::bad_alloc();
}
return std::make_tuple(tmp_ptr, size_to_alloc);
}
};
*/
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
inline
auto
Array
<
T
,
is_scal
>::
operator
()(
UInt
i
,
UInt
j
)
->
reference
{
AKANTU_DEBUG_ASSERT
(
this
->
size_
>
0
,
"The array
\"
"
<<
this
->
id
<<
"
\"
is empty"
);
AKANTU_DEBUG_ASSERT
((
i
<
this
->
size_
)
&&
(
j
<
this
->
nb_component
),
"The value at position ["
<<
i
<<
","
<<
j
<<
"] is out of range in array
\"
"
<<
this
->
id
<<
"
\"
"
);
return
this
->
values
[
i
*
this
->
nb_component
+
j
];
}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
inline
auto
Array
<
T
,
is_scal
>::
operator
()(
UInt
i
,
UInt
j
)
const
->
const_reference
{
AKANTU_DEBUG_ASSERT
(
this
->
size_
>
0
,
"The array
\"
"
<<
this
->
id
<<
"
\"
is empty"
);
AKANTU_DEBUG_ASSERT
((
i
<
this
->
size_
)
&&
(
j
<
this
->
nb_component
),
"The value at position ["
<<
i
<<
","
<<
j
<<
"] is out of range in array
\"
"
<<
this
->
id
<<
"
\"
"
);
return
this
->
values
[
i
*
this
->
nb_component
+
j
];
}
template
<
class
T
,
bool
is_scal
>
inline
auto
Array
<
T
,
is_scal
>::
operator
[](
UInt
i
)
->
reference
{
AKANTU_DEBUG_ASSERT
(
this
->
size_
>
0
,
"The array
\"
"
<<
this
->
id
<<
"
\"
is empty"
);
AKANTU_DEBUG_ASSERT
((
i
<
this
->
size_
*
this
->
nb_component
),
"The value at position ["
<<
i
<<
"] is out of range in array
\"
"
<<
this
->
id
<<
"
\"
"
);
return
this
->
values
[
i
];
}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
inline
auto
Array
<
T
,
is_scal
>::
operator
[](
UInt
i
)
const
->
const_reference
{
AKANTU_DEBUG_ASSERT
(
this
->
size_
>
0
,
"The array
\"
"
<<
this
->
id
<<
"
\"
is empty"
);
AKANTU_DEBUG_ASSERT
((
i
<
this
->
size_
*
this
->
nb_component
),
"The value at position ["
<<
i
<<
"] is out of range in array
\"
"
<<
this
->
id
<<
"
\"
"
);
return
this
->
values
[
i
];
}
/* -------------------------------------------------------------------------- */
/**
* erase an element. If the erased element is not the last of the array, the
* last element is moved into the hole in order to maintain contiguity. This
* may invalidate existing iterators (For instance an iterator obtained by
* Array::end() is no longer correct) and will change the order of the
* elements.
* @param i index of element to erase
*/
template
<
class
T
,
bool
is_scal
>
inline
void
Array
<
T
,
is_scal
>::
erase
(
UInt
i
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
((
this
->
size_
>
0
),
"The array is empty"
);
AKANTU_DEBUG_ASSERT
((
i
<
this
->
size_
),
"The element at position ["
<<
i
<<
"] is out of range ("
<<
i
<<
">="
<<
this
->
size_
<<
")"
);
if
(
i
!=
(
this
->
size_
-
1
))
{
for
(
UInt
j
=
0
;
j
<
this
->
nb_component
;
++
j
)
{
this
->
values
[
i
*
this
->
nb_component
+
j
]
=
this
->
values
[(
this
->
size_
-
1
)
*
this
->
nb_component
+
j
];
}
}
this
->
resize
(
this
->
size_
-
1
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/**
* Subtract another array entry by entry from this array in place. Both arrays
* must
* have the same size and nb_component. If the arrays have different shapes,
* code compiled in debug mode will throw an expeption and optimised code
* will behave in an unpredicted manner
* @param other array to subtract from this
* @return reference to modified this
*/
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>
&
Array
<
T
,
is_scal
>::
operator
-=
(
const
Array
<
T
,
is_scal
>
&
vect
)
{
AKANTU_DEBUG_ASSERT
((
this
->
size_
==
vect
.
size_
)
&&
(
this
->
nb_component
==
vect
.
nb_component
),
"The too array don't have the same sizes"
);
T
*
a
=
this
->
values
;
T
*
b
=
vect
.
storage
();
for
(
UInt
i
=
0
;
i
<
this
->
size_
*
this
->
nb_component
;
++
i
)
{
*
a
-=
*
b
;
++
a
;
++
b
;
}
return
*
this
;
}
/* -------------------------------------------------------------------------- */
/**
* Add another array entry by entry to this array in place. Both arrays must
* have the same size and nb_component. If the arrays have different shapes,
* code compiled in debug mode will throw an expeption and optimised code
* will behave in an unpredicted manner
* @param other array to add to this
* @return reference to modified this
*/
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>
&
Array
<
T
,
is_scal
>::
operator
+=
(
const
Array
<
T
,
is_scal
>
&
vect
)
{
AKANTU_DEBUG_ASSERT
((
this
->
size_
==
vect
.
size
())
&&
(
this
->
nb_component
==
vect
.
nb_component
),
"The too array don't have the same sizes"
);
T
*
a
=
this
->
values
;
T
*
b
=
vect
.
storage
();
for
(
UInt
i
=
0
;
i
<
this
->
size_
*
this
->
nb_component
;
++
i
)
{
*
a
++
+=
*
b
++
;
}
return
*
this
;
}
/* -------------------------------------------------------------------------- */
/**
* Multiply all entries of this array by a scalar in place
* @param alpha scalar multiplicant
* @return reference to modified this
*/
#ifndef SWIG
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>
&
Array
<
T
,
is_scal
>::
operator
*=
(
const
T
&
alpha
)
{
T
*
a
=
this
->
values
;
for
(
UInt
i
=
0
;
i
<
this
->
size_
*
this
->
nb_component
;
++
i
)
{
*
a
++
*=
alpha
;
}
return
*
this
;
}
#endif
/* -------------------------------------------------------------------------- */
/**
* Compare this array element by element to another.
* @param other array to compare to
* @return true it all element are equal and arrays have the same shape, else
* false
*/
template
<
class
T
,
bool
is_scal
>
bool
Array
<
T
,
is_scal
>::
operator
==
(
const
Array
<
T
,
is_scal
>
&
array
)
const
{
bool
equal
=
this
->
nb_component
==
array
.
nb_component
&&
this
->
size_
==
array
.
size_
&&
this
->
id
==
array
.
id
;
if
(
!
equal
)
return
false
;
if
(
this
->
values
==
array
.
storage
())
return
true
;
else
return
std
::
equal
(
this
->
values
,
this
->
values
+
this
->
size_
*
this
->
nb_component
,
array
.
storage
());
}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
bool
Array
<
T
,
is_scal
>::
operator
!=
(
const
Array
<
T
,
is_scal
>
&
array
)
const
{
return
!
operator
==
(
array
);
}
/* -------------------------------------------------------------------------- */
#ifndef SWIG
/**
* set all tuples of the array to a given vector or matrix
* @param vm Matrix or Vector to fill the array with
*/
template
<
class
T
,
bool
is_scal
>
template
<
template
<
typename
>
class
C
,
typename
>
inline
void
Array
<
T
,
is_scal
>::
set
(
const
C
<
T
>
&
vm
)
{
AKANTU_DEBUG_ASSERT
(
this
->
nb_component
==
vm
.
size
(),
"The size of the object does not match the number of components"
);
for
(
T
*
it
=
this
->
values
;
it
<
this
->
values
+
this
->
nb_component
*
this
->
size_
;
it
+=
this
->
nb_component
)
{
std
::
copy_n
(
vm
.
storage
(),
this
->
nb_component
,
it
);
}
}
#endif
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
void
Array
<
T
,
is_scal
>::
append
(
const
Array
<
T
>
&
other
)
{
AKANTU_DEBUG_ASSERT
(
this
->
nb_component
==
other
.
nb_component
,
"Cannot append an array with a different number of component"
);
UInt
old_size
=
this
->
size_
;
this
->
resize
(
this
->
size_
+
other
.
size
());
T
*
tmp
=
this
->
values
+
this
->
nb_component
*
old_size
;
std
::
copy_n
(
other
.
storage
(),
other
.
size
()
*
this
->
nb_component
,
tmp
);
}
/* -------------------------------------------------------------------------- */
/* Functions Array<T, is_scal> */
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>::
Array
(
UInt
size
,
UInt
nb_component
,
const
ID
&
id
)
:
parent
(
size
,
nb_component
,
id
)
{}
template
<>
inline
Array
<
std
::
string
,
false
>::
Array
(
UInt
size
,
UInt
nb_component
,
const
ID
&
id
)
:
parent
(
size
,
nb_component
,
""
,
id
)
{}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>::
Array
(
UInt
size
,
UInt
nb_component
,
const_reference
value
,
const
ID
&
id
)
:
parent
(
size
,
nb_component
,
value
,
id
)
{}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>::
Array
(
const
Array
&
vect
,
const
ID
&
id
)
:
parent
(
vect
,
id
)
{}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>
&
Array
<
T
,
is_scal
>::
operator
=
(
const
Array
<
T
,
is_scal
>
&
other
)
{
AKANTU_DEBUG_WARNING
(
"You are copying the array "
<<
this
->
id
<<
" are you sure it is on purpose"
);
if
(
&
other
==
this
)
return
*
this
;
parent
::
operator
=
(
other
);
return
*
this
;
}
/* -------------------------------------------------------------------------- */
#ifndef SWIG
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>::
Array
(
const
std
::
vector
<
T
>
&
vect
)
:
parent
(
vect
)
{}
#endif
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
Array
<
T
,
is_scal
>::~
Array
()
=
default
;
/* -------------------------------------------------------------------------- */
/**
* search elem in the array, return the position of the first occurrence or
* -1 if not found
* @param elem the element to look for
* @return index of the first occurrence of elem or -1 if elem is not present
*/
template
<
class
T
,
bool
is_scal
>
UInt
Array
<
T
,
is_scal
>::
find
(
const_reference
elem
)
const
{
AKANTU_DEBUG_IN
();
auto
begin
=
this
->
begin
();
auto
end
=
this
->
end
();
auto
it
=
std
::
find
(
begin
,
end
,
elem
);
AKANTU_DEBUG_OUT
();
return
(
it
!=
end
)
?
it
-
begin
:
UInt
(
-
1
);
}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
UInt
Array
<
T
,
is_scal
>::
find
(
T
elem
[])
const
{
AKANTU_DEBUG_IN
();
T
*
it
=
this
->
values
;
UInt
i
=
0
;
for
(;
i
<
this
->
size_
;
++
i
)
{
if
(
*
it
==
elem
[
0
])
{
T
*
cit
=
it
;
UInt
c
=
0
;
for
(;
(
c
<
this
->
nb_component
)
&&
(
*
cit
==
elem
[
c
]);
++
c
,
++
cit
)
;
if
(
c
==
this
->
nb_component
)
{
AKANTU_DEBUG_OUT
();
return
i
;
}
}
it
+=
this
->
nb_component
;
}
return
UInt
(
-
1
);
}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
template
<
template
<
typename
>
class
C
,
typename
>
inline
UInt
Array
<
T
,
is_scal
>::
find
(
const
C
<
T
>
&
elem
)
{
AKANTU_DEBUG_ASSERT
(
elem
.
size
()
==
this
->
nb_component
,
"Cannot find an element with a wrong size ("
<<
elem
.
size
()
<<
") != "
<<
this
->
nb_component
);
return
this
->
find
(
elem
.
storage
());
}
/* -------------------------------------------------------------------------- */
/**
* copy the content of another array. This overwrites the current content.
* @param other Array to copy into this array. It has to have the same
* nb_component as this. If compiled in debug mode, an incorrect other will
* result in an exception being thrown. Optimised code may result in
* unpredicted behaviour.
*/
template
<
class
T
,
bool
is_scal
>
void
Array
<
T
,
is_scal
>::
copy
(
const
Array
<
T
,
is_scal
>
&
vect
,
bool
no_sanity_check
)
{
AKANTU_DEBUG_IN
();
if
(
!
no_sanity_check
)
if
(
vect
.
nb_component
!=
this
->
nb_component
)
AKANTU_ERROR
(
"The two arrays do not have the same number of components"
);
this
->
resize
((
vect
.
size_
*
vect
.
nb_component
)
/
this
->
nb_component
);
std
::
copy_n
(
vect
.
storage
(),
this
->
size_
*
this
->
nb_component
,
this
->
values
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
bool
is_scal
>
class
ArrayPrintHelper
{
public
:
template
<
typename
T
>
static
void
print_content
(
const
Array
<
T
>
&
vect
,
std
::
ostream
&
stream
,
int
indent
)
{
if
(
AKANTU_DEBUG_TEST
(
dblDump
)
||
AKANTU_DEBUG_LEVEL_IS_TEST
())
{
std
::
string
space
(
indent
,
AKANTU_INDENT
);
stream
<<
space
<<
" + values : {"
;
for
(
UInt
i
=
0
;
i
<
vect
.
size
();
++
i
)
{
stream
<<
"{"
;
for
(
UInt
j
=
0
;
j
<
vect
.
getNbComponent
();
++
j
)
{
stream
<<
vect
(
i
,
j
);
if
(
j
!=
vect
.
getNbComponent
()
-
1
)
stream
<<
", "
;
}
stream
<<
"}"
;
if
(
i
!=
vect
.
size
()
-
1
)
stream
<<
", "
;
}
stream
<<
"}"
<<
std
::
endl
;
}
}
};
template
<>
class
ArrayPrintHelper
<
false
>
{
public
:
template
<
typename
T
>
static
void
print_content
(
__attribute__
((
unused
))
const
Array
<
T
>
&
vect
,
__attribute__
((
unused
))
std
::
ostream
&
stream
,
__attribute__
((
unused
))
int
indent
)
{}
};
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
void
Array
<
T
,
is_scal
>::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
(
indent
,
AKANTU_INDENT
);
std
::
streamsize
prec
=
stream
.
precision
();
std
::
ios_base
::
fmtflags
ff
=
stream
.
flags
();
stream
.
setf
(
std
::
ios_base
::
showbase
);
stream
.
precision
(
2
);
stream
<<
space
<<
"Array<"
<<
debug
::
demangle
(
typeid
(
T
).
name
())
<<
"> ["
<<
std
::
endl
;
stream
<<
space
<<
" + id : "
<<
this
->
id
<<
std
::
endl
;
stream
<<
space
<<
" + size : "
<<
this
->
size_
<<
std
::
endl
;
stream
<<
space
<<
" + nb_component : "
<<
this
->
nb_component
<<
std
::
endl
;
stream
<<
space
<<
" + allocated size : "
<<
this
->
getAllocatedSize
()
<<
std
::
endl
;
stream
<<
space
<<
" + memory size : "
<<
printMemorySize
<
T
>
(
this
->
getMemorySize
())
<<
std
::
endl
;
if
(
!
AKANTU_DEBUG_LEVEL_IS_TEST
())
stream
<<
space
<<
" + address : "
<<
std
::
hex
<<
this
->
values
<<
std
::
dec
<<
std
::
endl
;
stream
.
precision
(
prec
);
stream
.
flags
(
ff
);
ArrayPrintHelper
<
is_scal
or
std
::
is_enum
<
T
>::
value
>::
print_content
(
*
this
,
stream
,
indent
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
/* -------------------------------------------------------------------------- */
/* Inline Functions ArrayBase */
/* -------------------------------------------------------------------------- */
inline
void
ArrayBase
::
empty
()
{
this
->
size_
=
0
;
}
#ifndef SWIG
/* -------------------------------------------------------------------------- */
/* Iterators */
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
template
<
class
R
,
class
daughter
,
class
IR
,
bool
is_tensor
>
class
Array
<
T
,
is_scal
>::
iterator_internal
{
public
:
using
value_type
=
R
;
using
pointer
=
R
*
;
using
reference
=
R
&
;
using
const_reference
=
const
R
&
;
using
internal_value_type
=
IR
;
using
internal_pointer
=
IR
*
;
using
difference_type
=
std
::
ptrdiff_t
;
using
iterator_category
=
std
::
random_access_iterator_tag
;
static_assert
(
not
is_tensor
,
"Cannot handle tensors"
);
public
:
iterator_internal
(
pointer
data
=
nullptr
)
:
ret
(
data
),
initial
(
data
){};
iterator_internal
(
const
iterator_internal
&
it
)
=
default
;
iterator_internal
(
iterator_internal
&&
it
)
=
default
;
virtual
~
iterator_internal
()
=
default
;
inline
iterator_internal
&
operator
=
(
const
iterator_internal
&
it
)
=
default
;
UInt
getCurrentIndex
()
{
return
(
this
->
ret
-
this
->
initial
);
};
inline
reference
operator
*
()
{
return
*
ret
;
};
inline
const_reference
operator
*
()
const
{
return
*
ret
;
};
inline
pointer
operator
->
()
{
return
ret
;
};
inline
daughter
&
operator
++
()
{
++
ret
;
return
static_cast
<
daughter
&>
(
*
this
);
};
inline
daughter
&
operator
--
()
{
--
ret
;
return
static_cast
<
daughter
&>
(
*
this
);
};
inline
daughter
&
operator
+=
(
const
UInt
n
)
{
ret
+=
n
;
return
static_cast
<
daughter
&>
(
*
this
);
}
inline
daughter
&
operator
-=
(
const
UInt
n
)
{
ret
-=
n
;
return
static_cast
<
daughter
&>
(
*
this
);
}
inline
reference
operator
[](
const
UInt
n
)
{
return
ret
[
n
];
}
inline
bool
operator
==
(
const
iterator_internal
&
other
)
const
{
return
ret
==
other
.
ret
;
}
inline
bool
operator
!=
(
const
iterator_internal
&
other
)
const
{
return
ret
!=
other
.
ret
;
}
inline
bool
operator
<
(
const
iterator_internal
&
other
)
const
{
return
ret
<
other
.
ret
;
}
inline
bool
operator
<=
(
const
iterator_internal
&
other
)
const
{
return
ret
<=
other
.
ret
;
}
inline
bool
operator
>
(
const
iterator_internal
&
other
)
const
{
return
ret
>
other
.
ret
;
}
inline
bool
operator
>=
(
const
iterator_internal
&
other
)
const
{
return
ret
>=
other
.
ret
;
}
inline
daughter
operator
-
(
difference_type
n
)
{
return
daughter
(
ret
-
n
);
}
inline
daughter
operator
+
(
difference_type
n
)
{
return
daughter
(
ret
+
n
);
}
inline
difference_type
operator
-
(
const
iterator_internal
&
b
)
{
return
ret
-
b
.
ret
;
}
inline
pointer
data
()
const
{
return
ret
;
}
protected
:
pointer
ret
{
nullptr
};
pointer
initial
{
nullptr
};
};
/* -------------------------------------------------------------------------- */
/**
* Specialization for scalar types
*/
template
<
class
T
,
bool
is_scal
>
template
<
class
R
,
class
daughter
,
class
IR
>
class
Array
<
T
,
is_scal
>::
iterator_internal
<
R
,
daughter
,
IR
,
true
>
{
public
:
using
value_type
=
R
;
using
pointer
=
R
*
;
using
reference
=
R
&
;
using
proxy
=
typename
R
::
proxy
;
using
const_proxy
=
const
typename
R
::
proxy
;
using
const_reference
=
const
R
&
;
using
internal_value_type
=
IR
;
using
internal_pointer
=
IR
*
;
using
difference_type
=
std
::
ptrdiff_t
;
using
iterator_category
=
std
::
random_access_iterator_tag
;
public
:
iterator_internal
()
=
default
;
iterator_internal
(
pointer_type
data
,
UInt
_offset
)
:
_offset
(
_offset
),
initial
(
data
),
ret
(
nullptr
),
ret_ptr
(
data
)
{
AKANTU_ERROR
(
"The constructor should never be called it is just an ugly trick..."
);
}
iterator_internal
(
std
::
unique_ptr
<
internal_value_type
>
&&
wrapped
)
:
_offset
(
wrapped
->
size
()),
initial
(
wrapped
->
storage
()),
ret
(
std
::
move
(
wrapped
)),
ret_ptr
(
ret
->
storage
())
{}
iterator_internal
(
const
iterator_internal
&
it
)
{
if
(
this
!=
&
it
)
{
this
->
_offset
=
it
.
_offset
;
this
->
initial
=
it
.
initial
;
this
->
ret_ptr
=
it
.
ret_ptr
;
this
->
ret
=
std
::
make_unique
<
internal_value_type
>
(
*
it
.
ret
,
false
);
}
}
iterator_internal
(
iterator_internal
&&
it
)
=
default
;
virtual
~
iterator_internal
()
=
default
;
inline
iterator_internal
&
operator
=
(
const
iterator_internal
&
it
)
{
if
(
this
!=
&
it
)
{
this
->
_offset
=
it
.
_offset
;
this
->
initial
=
it
.
initial
;
this
->
ret_ptr
=
it
.
ret_ptr
;
if
(
this
->
ret
)
this
->
ret
->
shallowCopy
(
*
it
.
ret
);
else
this
->
ret
=
std
::
make_unique
<
internal_value_type
>
(
*
it
.
ret
,
false
);
}
return
*
this
;
}
UInt
getCurrentIndex
()
{
return
(
this
->
ret_ptr
-
this
->
initial
)
/
this
->
_offset
;
};
inline
reference
operator
*
()
{
ret
->
values
=
ret_ptr
;
return
*
ret
;
};
inline
const_reference
operator
*
()
const
{
ret
->
values
=
ret_ptr
;
return
*
ret
;
};
inline
pointer
operator
->
()
{
ret
->
values
=
ret_ptr
;
return
ret
.
get
();
};
inline
daughter
&
operator
++
()
{
ret_ptr
+=
_offset
;
return
static_cast
<
daughter
&>
(
*
this
);
};
inline
daughter
&
operator
--
()
{
ret_ptr
-=
_offset
;
return
static_cast
<
daughter
&>
(
*
this
);
};
inline
daughter
&
operator
+=
(
const
UInt
n
)
{
ret_ptr
+=
_offset
*
n
;
return
static_cast
<
daughter
&>
(
*
this
);
}
inline
daughter
&
operator
-=
(
const
UInt
n
)
{
ret_ptr
-=
_offset
*
n
;
return
static_cast
<
daughter
&>
(
*
this
);
}
inline
proxy
operator
[](
const
UInt
n
)
{
ret
->
values
=
ret_ptr
+
n
*
_offset
;
return
proxy
(
*
ret
);
}
inline
const_proxy
operator
[](
const
UInt
n
)
const
{
ret
->
values
=
ret_ptr
+
n
*
_offset
;
return
const_proxy
(
*
ret
);
}
inline
bool
operator
==
(
const
iterator_internal
&
other
)
const
{
return
this
->
ret_ptr
==
other
.
ret_ptr
;
}
inline
bool
operator
!=
(
const
iterator_internal
&
other
)
const
{
return
this
->
ret_ptr
!=
other
.
ret_ptr
;
}
inline
bool
operator
<
(
const
iterator_internal
&
other
)
const
{
return
this
->
ret_ptr
<
other
.
ret_ptr
;
}
inline
bool
operator
<=
(
const
iterator_internal
&
other
)
const
{
return
this
->
ret_ptr
<=
other
.
ret_ptr
;
}
inline
bool
operator
>
(
const
iterator_internal
&
other
)
const
{
return
this
->
ret_ptr
>
other
.
ret_ptr
;
}
inline
bool
operator
>=
(
const
iterator_internal
&
other
)
const
{
return
this
->
ret_ptr
>=
other
.
ret_ptr
;
}
inline
daughter
operator
+
(
difference_type
n
)
{
daughter
tmp
(
static_cast
<
daughter
&>
(
*
this
));
tmp
+=
n
;
return
tmp
;
}
inline
daughter
operator
-
(
difference_type
n
)
{
daughter
tmp
(
static_cast
<
daughter
&>
(
*
this
));
tmp
-=
n
;
return
tmp
;
}
inline
difference_type
operator
-
(
const
iterator_internal
&
b
)
{
return
(
this
->
ret_ptr
-
b
.
ret_ptr
)
/
_offset
;
}
inline
pointer_type
data
()
const
{
return
ret_ptr
;
}
inline
difference_type
offset
()
const
{
return
_offset
;
}
protected
:
UInt
_offset
{
0
};
pointer_type
initial
{
nullptr
};
std
::
unique_ptr
<
internal_value_type
>
ret
{
nullptr
};
pointer_type
ret_ptr
{
nullptr
};
};
/* -------------------------------------------------------------------------- */
/* Iterators */
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
template
<
typename
R
>
class
Array
<
T
,
is_scal
>::
const_iterator
:
public
iterator_internal
<
const
R
,
Array
<
T
,
is_scal
>::
const_iterator
<
R
>
,
R
>
{
public
:
using
parent
=
iterator_internal
<
const
R
,
const_iterator
,
R
>
;
using
value_type
=
typename
parent
::
value_type
;
using
pointer
=
typename
parent
::
pointer
;
using
reference
=
typename
parent
::
reference
;
using
difference_type
=
typename
parent
::
difference_type
;
using
iterator_category
=
typename
parent
::
iterator_category
;
public
:
const_iterator
()
:
parent
(){};
// const_iterator(pointer_type data, UInt offset) : parent(data, offset) {}
// const_iterator(pointer warped) : parent(warped) {}
// const_iterator(const parent & it) : parent(it) {}
const_iterator
(
const
const_iterator
&
it
)
=
default
;
const_iterator
(
const_iterator
&&
it
)
=
default
;
template
<
typename
P
,
typename
=
std
::
enable_if_t
<
not
aka
::
is_tensor
<
P
>::
value
>>
const_iterator
(
P
*
data
)
:
parent
(
data
)
{}
template
<
typename
UP_P
,
typename
=
std
::
enable_if_t
<
aka
::
is_tensor
<
typename
UP_P
::
element_type
>::
value
>>
const_iterator
(
UP_P
&&
tensor
)
:
parent
(
std
::
forward
<
UP_P
>
(
tensor
))
{}
const_iterator
&
operator
=
(
const
const_iterator
&
it
)
=
default
;
};
/* -------------------------------------------------------------------------- */
template
<
class
T
,
class
R
,
bool
is_tensor_
=
aka
::
is_tensor
<
R
>::
value
>
struct
ConstConverterIteratorHelper
{
using
const_iterator
=
typename
Array
<
T
>::
template
const_iterator
<
R
>
;
using
iterator
=
typename
Array
<
T
>::
template
iterator
<
R
>
;
static
inline
const_iterator
convert
(
const
iterator
&
it
)
{
return
const_iterator
(
std
::
unique_ptr
<
R
>
(
new
R
(
*
it
,
false
)));
}
};
template
<
class
T
,
class
R
>
struct
ConstConverterIteratorHelper
<
T
,
R
,
false
>
{
using
const_iterator
=
typename
Array
<
T
>::
template
const_iterator
<
R
>
;
using
iterator
=
typename
Array
<
T
>::
template
iterator
<
R
>
;
static
inline
const_iterator
convert
(
const
iterator
&
it
)
{
return
const_iterator
(
it
.
data
());
}
};
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
template
<
typename
R
>
class
Array
<
T
,
is_scal
>::
iterator
:
public
iterator_internal
<
R
,
Array
<
T
,
is_scal
>::
iterator
<
R
>>
{
public
:
using
parent
=
iterator_internal
<
R
,
iterator
>
;
using
value_type
=
typename
parent
::
value_type
;
using
pointer
=
typename
parent
::
pointer
;
using
reference
=
typename
parent
::
reference
;
using
difference_type
=
typename
parent
::
difference_type
;
using
iterator_category
=
typename
parent
::
iterator_category
;
public
:
iterator
()
:
parent
(){};
iterator
(
const
iterator
&
it
)
=
default
;
iterator
(
iterator
&&
it
)
=
default
;
template
<
typename
P
,
typename
=
std
::
enable_if_t
<
not
aka
::
is_tensor
<
P
>::
value
>>
iterator
(
P
*
data
)
:
parent
(
data
)
{}
template
<
typename
UP_P
,
typename
=
std
::
enable_if_t
<
aka
::
is_tensor
<
typename
UP_P
::
element_type
>::
value
>>
iterator
(
UP_P
&&
tensor
)
:
parent
(
std
::
forward
<
UP_P
>
(
tensor
))
{}
iterator
&
operator
=
(
const
iterator
&
it
)
=
default
;
operator
const_iterator
<
R
>
()
{
return
ConstConverterIteratorHelper
<
T
,
R
>::
convert
(
*
this
);
}
};
/* -------------------------------------------------------------------------- */
/* Begin/End functions implementation */
/* -------------------------------------------------------------------------- */
namespace
detail
{
template
<
class
Tuple
,
size_t
...
Is
>
constexpr
auto
take_front_impl
(
Tuple
&&
t
,
std
::
index_sequence
<
Is
...
>
)
{
return
std
::
make_tuple
(
std
::
get
<
Is
>
(
std
::
forward
<
Tuple
>
(
t
))...);
}
template
<
size_t
N
,
class
Tuple
>
constexpr
auto
take_front
(
Tuple
&&
t
)
{
return
take_front_impl
(
std
::
forward
<
Tuple
>
(
t
),
std
::
make_index_sequence
<
N
>
{});
}
template
<
typename
...
V
>
constexpr
auto
product_all
(
V
&&
...
v
)
{
std
::
common_type_t
<
int
,
V
...
>
result
=
1
;
(
void
)
std
::
initializer_list
<
int
>
{(
result
*=
v
,
0
)...};
return
result
;
}
template
<
typename
...
T
>
std
::
string
to_string_all
(
T
&&
...
t
)
{
if
(
sizeof
...(
T
)
==
0
)
return
""
;
std
::
stringstream
ss
;
bool
noComma
=
true
;
ss
<<
"("
;
(
void
)
std
::
initializer_list
<
bool
>
{
(
ss
<<
(
noComma
?
""
:
", "
)
<<
t
,
noComma
=
false
)...};
ss
<<
")"
;
return
ss
.
str
();
}
template
<
std
::
size_t
N
>
struct
InstantiationHelper
{
template
<
typename
type
,
typename
T
,
typename
...
Ns
>
static
auto
instantiate
(
T
&&
data
,
Ns
...
ns
)
{
return
std
::
make_unique
<
type
>
(
data
,
ns
...);
}
};
template
<>
struct
InstantiationHelper
<
0
>
{
template
<
typename
type
,
typename
T
>
static
auto
instantiate
(
T
&&
data
)
{
return
data
;
}
};
template
<
typename
Arr
,
typename
T
,
typename
...
Ns
>
decltype
(
auto
)
get_iterator
(
Arr
&&
array
,
T
*
data
,
Ns
&&
...
ns
)
{
using
type
=
IteratorHelper_t
<
sizeof
...(
Ns
)
-
1
,
T
>
;
using
array_type
=
std
::
decay_t
<
Arr
>
;
using
iterator
=
std
::
conditional_t
<
std
::
is_const
<
std
::
remove_reference_t
<
Arr
>>::
value
,
typename
array_type
::
template
const_iterator
<
type
>
,
typename
array_type
::
template
iterator
<
type
>>
;
static_assert
(
sizeof
...(
Ns
),
"You should provide a least one size"
);
if
(
array
.
getNbComponent
()
*
array
.
size
()
!=
product_all
(
std
::
forward
<
Ns
>
(
ns
)...))
{
AKANTU_CUSTOM_EXCEPTION_INFO
(
debug
::
ArrayException
(),
"The iterator on "
<<
debug
::
demangle
(
typeid
(
Arr
).
name
())
<<
to_string_all
(
array
.
size
(),
array
.
getNbComponent
())
<<
"is not compatible with the type "
<<
debug
::
demangle
(
typeid
(
type
).
name
())
<<
to_string_all
(
ns
...));
}
auto
&&
wrapped
=
aka
::
apply
(
[
&
](
auto
...
n
)
{
return
InstantiationHelper
<
sizeof
...(
n
)
>::
template
instantiate
<
type
>
(
data
,
n
...);
},
take_front
<
sizeof
...(
Ns
)
-
1
>
(
std
::
make_tuple
(
ns
...)));
return
iterator
(
std
::
move
(
wrapped
));
}
}
// namespace detail
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
begin
(
Ns
&&
...
ns
)
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
,
std
::
forward
<
Ns
>
(
ns
)...,
this
->
size_
);
}
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
end
(
Ns
&&
...
ns
)
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
+
this
->
nb_component
*
this
->
size_
,
std
::
forward
<
Ns
>
(
ns
)...,
this
->
size_
);
}
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
begin
(
Ns
&&
...
ns
)
const
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
,
std
::
forward
<
Ns
>
(
ns
)...,
this
->
size_
);
}
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
end
(
Ns
&&
...
ns
)
const
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
+
this
->
nb_component
*
this
->
size_
,
std
::
forward
<
Ns
>
(
ns
)...,
this
->
size_
);
}
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
begin_reinterpret
(
Ns
&&
...
ns
)
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
,
std
::
forward
<
Ns
>
(
ns
)...);
}
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
end_reinterpret
(
Ns
&&
...
ns
)
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
+
detail
::
product_all
(
std
::
forward
<
Ns
>
(
ns
)...),
std
::
forward
<
Ns
>
(
ns
)...);
}
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
begin_reinterpret
(
Ns
&&
...
ns
)
const
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
,
std
::
forward
<
Ns
>
(
ns
)...);
}
template
<
class
T
,
bool
is_scal
>
template
<
typename
...
Ns
>
inline
decltype
(
auto
)
Array
<
T
,
is_scal
>::
end_reinterpret
(
Ns
&&
...
ns
)
const
{
return
detail
::
get_iterator
(
*
this
,
this
->
values
+
detail
::
product_all
(
std
::
forward
<
Ns
>
(
ns
)...),
std
::
forward
<
Ns
>
(
ns
)...);
}
/* -------------------------------------------------------------------------- */
/* Views */
/* -------------------------------------------------------------------------- */
namespace
detail
{
template
<
typename
Array
,
typename
...
Ns
>
class
ArrayView
{
using
tuple
=
std
::
tuple
<
Ns
...
>
;
public
:
ArrayView
(
Array
&&
array
,
Ns
...
ns
)
:
array
(
array
),
sizes
(
std
::
move
(
ns
)...)
{}
ArrayView
(
ArrayView
&&
array_view
)
=
default
;
ArrayView
&
operator
=
(
const
ArrayView
&
array_view
)
=
default
;
ArrayView
&
operator
=
(
ArrayView
&&
array_view
)
=
default
;
decltype
(
auto
)
begin
()
{
return
aka
::
apply
(
[
&
](
auto
&&
...
ns
)
{
return
array
.
get
().
begin_reinterpret
(
ns
...);
},
sizes
);
}
decltype
(
auto
)
begin
()
const
{
return
aka
::
apply
(
[
&
](
auto
&&
...
ns
)
{
return
array
.
get
().
begin_reinterpret
(
ns
...);
},
sizes
);
}
decltype
(
auto
)
end
()
{
return
aka
::
apply
(
[
&
](
auto
&&
...
ns
)
{
return
array
.
get
().
end_reinterpret
(
ns
...);
},
sizes
);
}
decltype
(
auto
)
end
()
const
{
return
aka
::
apply
(
[
&
](
auto
&&
...
ns
)
{
return
array
.
get
().
end_reinterpret
(
ns
...);
},
sizes
);
}
decltype
(
auto
)
size
()
const
{
return
std
::
get
<
std
::
tuple_size
<
tuple
>::
value
-
1
>
(
sizes
);
}
decltype
(
auto
)
dims
()
const
{
return
std
::
tuple_size
<
tuple
>::
value
-
1
;
}
private
:
std
::
reference_wrapper
<
std
::
remove_reference_t
<
Array
>>
array
;
tuple
sizes
;
};
}
// namespace detail
/* -------------------------------------------------------------------------- */
template
<
typename
Array
,
typename
...
Ns
>
decltype
(
auto
)
make_view
(
Array
&&
array
,
Ns
...
ns
)
{
static_assert
(
aka
::
conjunction
<
std
::
is_integral
<
std
::
decay_t
<
Ns
>>
...
>::
value
,
"Ns should be integral types"
);
auto
size
=
std
::
forward
<
decltype
(
array
)
>
(
array
).
size
()
*
std
::
forward
<
decltype
(
array
)
>
(
array
).
getNbComponent
()
/
detail
::
product_all
(
ns
...);
return
detail
::
ArrayView
<
Array
,
std
::
common_type_t
<
size_t
,
Ns
>
...,
std
::
common_type_t
<
size_t
,
decltype
(
size
)
>>
(
std
::
forward
<
Array
>
(
array
),
std
::
move
(
ns
)...,
size
);
}
/* -------------------------------------------------------------------------- */
template
<
class
T
,
bool
is_scal
>
template
<
typename
R
>
inline
typename
Array
<
T
,
is_scal
>::
template
iterator
<
R
>
Array
<
T
,
is_scal
>::
erase
(
const
iterator
<
R
>
&
it
)
{
T
*
curr
=
it
.
data
();
UInt
pos
=
(
curr
-
this
->
values
)
/
this
->
nb_component
;
erase
(
pos
);
iterator
<
R
>
rit
=
it
;
return
--
rit
;
}
#endif
}
// namespace akantu
#endif
/* __AKANTU_AKA_ARRAY_TMPL_HH__ */
Event Timeline
Log In to Comment