Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90905576
newmark.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 20:26
Size
5 KB
Mime Type
text/x-python
Expires
Thu, Nov 7, 20:26 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22154431
Attached To
rAKA akantu
newmark.py
View Options
#!/usr/bin/python
################################################################
import
akantu
import
numpy
as
np
import
os
,
subprocess
################################################################
class
FixedValue
:
def
__init__
(
self
,
value
,
axis
):
self
.
value
=
value
if
axis
==
'x'
:
axis
=
0
if
axis
==
'y'
:
axis
=
1
self
.
axis
=
axis
def
operator
(
self
,
node
,
flags
,
disp
,
coord
):
# sets the displacement to the desired value in the desired axis
disp
[
self
.
axis
]
=
self
.
value
# sets the blocked dofs vector to true in the desired axis
flags
[
self
.
axis
]
=
True
################################################################
class
LocalElastic
:
def
__init__
(
self
):
## young modulus
self
.
E
=
1
## Poisson coefficient
self
.
nu
=
0.3
## density
self
.
rho
=
1
## First Lame coefficient
self
.
_lambda
=
self
.
nu
*
self
.
E
/
((
1
+
self
.
nu
)
*
(
1
-
2
*
self
.
nu
))
## Second Lame coefficient (shear modulus)
self
.
mu
=
self
.
E
/
(
2
*
(
1
+
self
.
nu
));
## declares all the internals
def
registerInternals
(
self
):
return
[]
## declares all the parameters that could be parsed
def
registerParam
(
self
):
return
[]
## declares all the parameters that are needed
def
getPushWaveSpeed
(
self
):
return
np
.
sqrt
((
self
.
_lambda
+
2
*
self
.
mu
)
/
self
.
rho
);
## constitutive law for a given quadrature point
def
computeStress
(
self
,
grad_u
,
sigma
,
internals
):
lbda
=
1.
mu
=
1.
trace
=
grad_u
.
trace
();
sigma
[:,:]
=
lbda
*
trace
*
np
.
eye
(
2
)
+
mu
*
(
grad_u
+
grad_u
.
T
)
################################################################
def
main
():
spatial_dimension
=
2
Lbar
=
10.
akantu
.
initialize
(
'material.dat'
)
mesh_file
=
'bar.msh'
max_steps
=
250
time_step
=
1e-3
#if mesh was not created the calls gmsh to generate it
if
not
os
.
path
.
isfile
(
mesh_file
):
import
subprocess
ret
=
subprocess
.
call
(
'gmsh -2 bar.geo bar.msh'
,
shell
=
True
)
if
not
ret
==
0
:
raise
Exception
(
'execution of GMSH failed: do you have it installed ?'
)
################################################################
## Initialization
################################################################
mesh
=
akantu
.
Mesh
(
spatial_dimension
)
mesh
.
read
(
mesh_file
)
mesh
.
createGroupsFromStringMeshData
(
"physical_names"
)
model
=
akantu
.
SolidMechanicsModel
(
mesh
)
model
.
initFull
(
akantu
.
SolidMechanicsModelOptions
(
akantu
.
_explicit_lumped_mass
,
True
))
mat
=
LocalElastic
()
model
.
registerNewPythonMaterial
(
mat
,
"local_elastic"
)
model
.
initMaterials
()
model
.
setBaseName
(
"waves"
)
model
.
addDumpFieldVector
(
"displacement"
)
model
.
addDumpFieldVector
(
"acceleration"
)
model
.
addDumpFieldVector
(
"velocity"
)
model
.
addDumpField
(
"blocked_dofs"
)
################################################################
## Boundary conditions
################################################################
residual
=
model
.
getResidual
()
mass
=
model
.
getMass
()
displacement
=
model
.
getDisplacement
()
acceleration
=
model
.
getAcceleration
()
velocity
=
model
.
getVelocity
()
blocked_dofs
=
model
.
getBlockedDOFs
()
################################################################
## boundary conditions
################################################################
model
.
applyDirichletBC
(
FixedValue
(
0
,
'x'
),
"XBlocked"
)
model
.
applyDirichletBC
(
FixedValue
(
0
,
'y'
),
"YBlocked"
)
################################################################
## initial conditions
################################################################
nb_nodes
=
mesh
.
getNbNodes
()
position
=
mesh
.
getNodes
()
pulse_width
=
1
A
=
0.01
for
i
in
range
(
0
,
nb_nodes
):
# Sinus * Gaussian
x
=
position
[
i
,
0
]
-
5.
L
=
pulse_width
k
=
0.1
*
2
*
np
.
pi
*
3
/
L
displacement
[
i
,
0
]
=
A
*
np
.
sin
(
k
*
x
)
*
np
.
exp
(
-
(
k
*
x
)
*
(
k
*
x
)
/
(
L
*
L
))
################################################################
## timestep value computation
################################################################
time_factor
=
0.8
stable_time_step
=
model
.
getStableTimeStep
()
*
time_factor
print
"Stable Time Step = {0}"
.
format
(
stable_time_step
)
print
"Required Time Step = {0}"
.
format
(
time_step
)
time_step
=
stable_time_step
*
time_factor
model
.
setTimeStep
(
time_step
)
################################################################
## loop for evolution of motion dynamics
################################################################
model
.
updateResidual
()
epot
=
model
.
getEnergy
(
'potential'
)
ekin
=
model
.
getEnergy
(
'kinetic'
)
print
"step,step * time_step,epot,ekin,epot + ekin"
for
step
in
range
(
0
,
max_steps
+
1
):
model
.
dump
()
## output energy calculation to screen
print
"{0},{1},{2},{3},{4}"
.
format
(
step
,
step
*
time_step
,
epot
,
ekin
,
(
epot
+
ekin
))
model
.
solveStep
()
akantu
.
finalize
()
return
################################################################
if
__name__
==
"__main__"
:
main
()
Event Timeline
Log In to Comment