Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90926206
angle_cosine_periodic_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 01:49
Size
5 KB
Mime Type
text/x-c++
Expires
Fri, Nov 8, 01:49 (1 d, 22 h)
Engine
blob
Format
Raw Data
Handle
22103298
Attached To
rLAMMPS lammps
angle_cosine_periodic_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "lmptype.h"
#include "angle_cosine_periodic_omp.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "domain.h"
#include "math_const.h"
#include <math.h>
using
namespace
LAMMPS_NS
;
using
namespace
MathConst
;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
void
AngleCosinePeriodicOMP
::
compute
(
int
eflag
,
int
vflag
)
{
if
(
eflag
||
vflag
)
{
ev_setup
(
eflag
,
vflag
);
}
else
evflag
=
0
;
const
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
const
int
nthreads
=
comm
->
nthreads
;
const
int
inum
=
neighbor
->
nanglelist
;
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int
ifrom
,
ito
,
tid
;
loop_setup_thr
(
ifrom
,
ito
,
tid
,
inum
,
nthreads
);
ThrData
*
thr
=
fix
->
get_thr
(
tid
);
ev_setup_thr
(
eflag
,
vflag
,
nall
,
eatom
,
vatom
,
thr
);
if
(
evflag
)
{
if
(
eflag
)
{
if
(
force
->
newton_bond
)
eval
<
1
,
1
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
1
,
1
,
0
>
(
ifrom
,
ito
,
thr
);
}
else
{
if
(
force
->
newton_bond
)
eval
<
1
,
0
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
1
,
0
,
0
>
(
ifrom
,
ito
,
thr
);
}
}
else
{
if
(
force
->
newton_bond
)
eval
<
0
,
0
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
0
,
0
,
0
>
(
ifrom
,
ito
,
thr
);
}
reduce_thr
(
this
,
eflag
,
vflag
,
thr
);
}
// end of omp parallel region
}
template
<
int
EVFLAG
,
int
EFLAG
,
int
NEWTON_BOND
>
void
AngleCosinePeriodicOMP
::
eval
(
int
nfrom
,
int
nto
,
ThrData
*
const
thr
)
{
int
i
,
i1
,
i2
,
i3
,
n
,
m
,
type
,
b_factor
;
double
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
;
double
eangle
,
f1
[
3
],
f3
[
3
];
double
rsq1
,
rsq2
,
r1
,
r2
,
c
,
s
,
a
,
a11
,
a12
,
a22
;
double
tn
,
tn_1
,
tn_2
,
un
,
un_1
,
un_2
;
const
double
*
const
*
const
x
=
atom
->
x
;
double
*
const
*
const
f
=
thr
->
get_f
();
const
int
*
const
*
const
anglelist
=
neighbor
->
anglelist
;
const
int
nlocal
=
atom
->
nlocal
;
for
(
n
=
nfrom
;
n
<
nto
;
n
++
)
{
i1
=
anglelist
[
n
][
0
];
i2
=
anglelist
[
n
][
1
];
i3
=
anglelist
[
n
][
2
];
type
=
anglelist
[
n
][
3
];
// 1st bond
delx1
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
dely1
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
delz1
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx1
,
dely1
,
delz1
);
rsq1
=
delx1
*
delx1
+
dely1
*
dely1
+
delz1
*
delz1
;
r1
=
sqrt
(
rsq1
);
// 2nd bond
delx2
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
dely2
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
delz2
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
delx2
,
dely2
,
delz2
);
rsq2
=
delx2
*
delx2
+
dely2
*
dely2
+
delz2
*
delz2
;
r2
=
sqrt
(
rsq2
);
// c = cosine of angle
c
=
delx1
*
delx2
+
dely1
*
dely2
+
delz1
*
delz2
;
c
/=
r1
*
r2
;
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
m
=
multiplicity
[
type
];
b_factor
=
b
[
type
];
// cos(n*x) = Tn(cos(x))
// Tn(x) = Chebyshev polynomials of the first kind: T_0 = 1, T_1 = x, ...
// recurrence relationship:
// Tn(x) = 2*x*T[n-1](x) - T[n-2](x) where T[-1](x) = 0
// also, dTn(x)/dx = n*U[n-1](x)
// where Un(x) = 2*x*U[n-1](x) - U[n-2](x) and U[-1](x) = 0
// finally need to handle special case for n = 1
tn
=
1.0
;
tn_1
=
1.0
;
tn_2
=
0.0
;
un
=
1.0
;
un_1
=
2.0
;
un_2
=
0.0
;
s
=
sqrt
(
1.0
-
c
*
c
);
if
(
s
<
SMALL
)
s
=
SMALL
;
s
=
1.0
/
s
;
// force & energy
tn_2
=
c
;
for
(
i
=
1
;
i
<=
m
;
i
++
)
{
tn
=
2
*
c
*
tn_1
-
tn_2
;
tn_2
=
tn_1
;
tn_1
=
tn
;
}
for
(
i
=
2
;
i
<=
m
;
i
++
)
{
un
=
2
*
c
*
un_1
-
un_2
;
un_2
=
un_1
;
un_1
=
un
;
}
tn
=
b_factor
*
pow
(
-
1.0
,
m
)
*
tn
;
un
=
b_factor
*
pow
(
-
1.0
,
m
)
*
m
*
un
;
if
(
EFLAG
)
eangle
=
2
*
k
[
type
]
*
(
1.0
-
tn
);
a
=
-
k
[
type
]
*
un
;
a11
=
a
*
c
/
rsq1
;
a12
=
-
a
/
(
r1
*
r2
);
a22
=
a
*
c
/
rsq2
;
f1
[
0
]
=
a11
*
delx1
+
a12
*
delx2
;
f1
[
1
]
=
a11
*
dely1
+
a12
*
dely2
;
f1
[
2
]
=
a11
*
delz1
+
a12
*
delz2
;
f3
[
0
]
=
a22
*
delx2
+
a12
*
delx1
;
f3
[
1
]
=
a22
*
dely2
+
a12
*
dely1
;
f3
[
2
]
=
a22
*
delz2
+
a12
*
delz1
;
// apply force to each of 3 atoms
if
(
NEWTON_BOND
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
f1
[
0
];
f
[
i1
][
1
]
+=
f1
[
1
];
f
[
i1
][
2
]
+=
f1
[
2
];
}
if
(
NEWTON_BOND
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
-=
f1
[
0
]
+
f3
[
0
];
f
[
i2
][
1
]
-=
f1
[
1
]
+
f3
[
1
];
f
[
i2
][
2
]
-=
f1
[
2
]
+
f3
[
2
];
}
if
(
NEWTON_BOND
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
f3
[
0
];
f
[
i3
][
1
]
+=
f3
[
1
];
f
[
i3
][
2
]
+=
f3
[
2
];
}
if
(
EVFLAG
)
ev_tally_thr
(
this
,
i1
,
i2
,
i3
,
nlocal
,
NEWTON_BOND
,
eangle
,
f1
,
f3
,
delx1
,
dely1
,
delz1
,
delx2
,
dely2
,
delz2
,
thr
);
}
}
Event Timeline
Log In to Comment