Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90932200
angle_class2.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 03:35
Size
13 KB
Mime Type
text/x-c
Expires
Fri, Nov 8, 03:35 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22159704
Attached To
rLAMMPS lammps
angle_class2.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Eric Simon (Cray)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "angle_class2.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleClass2::AngleClass2(LAMMPS *lmp) : Angle(lmp) {}
/* ---------------------------------------------------------------------- */
AngleClass2::~AngleClass2()
{
if (allocated) {
memory->sfree(setflag);
memory->sfree(setflag_a);
memory->sfree(setflag_bb);
memory->sfree(setflag_ba);
memory->sfree(theta0);
memory->sfree(k2);
memory->sfree(k3);
memory->sfree(k4);
memory->sfree(bb_k);
memory->sfree(bb_r1);
memory->sfree(bb_r2);
memory->sfree(ba_k1);
memory->sfree(ba_k2);
memory->sfree(ba_r1);
memory->sfree(ba_r2);
}
}
/* ---------------------------------------------------------------------- */
void AngleClass2::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2;
double eangle,f1[3],f3[3];
double dtheta,dtheta2,dtheta3,dtheta4,de_angle;
double dr1,dr2,tk1,tk2,aa1,aa2,aa11,aa12,aa21,aa22;
double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22,b1,b2;
double vx11,vx12,vy11,vy12,vz11,vz12,vx21,vx22,vy21,vy22,vz21,vz22;
eangle = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
// force & energy for angle term
dtheta = acos(c) - theta0[type];
dtheta2 = dtheta*dtheta;
dtheta3 = dtheta2*dtheta;
dtheta4 = dtheta3*dtheta;
de_angle = 2.0*k2[type]*dtheta + 3.0*k3[type]*dtheta2 +
4.0*k4[type]*dtheta3;
a = -de_angle*s;
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
f1[0] = a11*delx1 + a12*delx2;
f1[1] = a11*dely1 + a12*dely2;
f1[2] = a11*delz1 + a12*delz2;
f3[0] = a22*delx2 + a12*delx1;
f3[1] = a22*dely2 + a12*dely1;
f3[2] = a22*delz2 + a12*delz1;
if (eflag) eangle = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4;
// force & energy for bond-bond term
dr1 = r1 - bb_r1[type];
dr2 = r2 - bb_r2[type];
tk1 = bb_k[type] * dr1;
tk2 = bb_k[type] * dr2;
f1[0] -= delx1*tk2/r1;
f1[1] -= dely1*tk2/r1;
f1[2] -= delz1*tk2/r1;
f3[0] -= delx2*tk1/r2;
f3[1] -= dely2*tk1/r2;
f3[2] -= delz2*tk1/r2;
if (eflag) eangle += bb_k[type]*dr1*dr2;
// force & energy for bond-angle term
aa1 = s * dr1 * ba_k1[type];
aa2 = s * dr2 * ba_k2[type];
aa11 = aa1 * c / rsq1;
aa12 = -aa1 / (r1 * r2);
aa21 = aa2 * c / rsq1;
aa22 = -aa2 / (r1 * r2);
vx11 = (aa11 * delx1) + (aa12 * delx2);
vx12 = (aa21 * delx1) + (aa22 * delx2);
vy11 = (aa11 * dely1) + (aa12 * dely2);
vy12 = (aa21 * dely1) + (aa22 * dely2);
vz11 = (aa11 * delz1) + (aa12 * delz2);
vz12 = (aa21 * delz1) + (aa22 * delz2);
aa11 = aa1 * c / rsq2;
aa21 = aa2 * c / rsq2;
vx21 = (aa11 * delx2) + (aa12 * delx1);
vx22 = (aa21 * delx2) + (aa22 * delx1);
vy21 = (aa11 * dely2) + (aa12 * dely1);
vy22 = (aa21 * dely2) + (aa22 * dely1);
vz21 = (aa11 * delz2) + (aa12 * delz1);
vz22 = (aa21 * delz2) + (aa22 * delz1);
b1 = ba_k1[type] * dtheta / r1;
b2 = ba_k2[type] * dtheta / r2;
f1[0] -= vx11 + b1*delx1 + vx12;
f1[1] -= vy11 + b1*dely1 + vy12;
f1[2] -= vz11 + b1*delz1 + vz12;
f3[0] -= vx21 + b2*delx2 + vx22;
f3[1] -= vy21 + b2*dely2 + vy22;
f3[2] -= vz21 + b2*delz2 + vz22;
if (eflag) eangle += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
}
/* ---------------------------------------------------------------------- */
void AngleClass2::allocate()
{
allocated = 1;
int n = atom->nangletypes;
theta0 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:theta0");
k2 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k2");
k3 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k3");
k4 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:k4");
bb_k = (double *) memory->smalloc((n+1)*sizeof(double),"angle:bb_k");
bb_r1 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:bb_r1");
bb_r2 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:bb_r2");
ba_k1 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:ba_k1");
ba_k2 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:ba_k2");
ba_r1 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:ba_r1");
ba_r2 = (double *) memory->smalloc((n+1)*sizeof(double),"angle:ba_r2");
setflag = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag");
setflag_a = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag_a");
setflag_bb = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag_bb");
setflag_ba = (int *) memory->smalloc((n+1)*sizeof(int),"angle:setflag_ba");
for (int i = 1; i <= n; i++)
setflag[i] = setflag_a[i] = setflag_bb[i] = setflag_ba[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
which = 0 -> Angle coeffs
which = 1 -> BondBond coeffs
which = 2 -> BondAngle coeffs
------------------------------------------------------------------------- */
void AngleClass2::coeff(int which, int narg, char **arg)
{
if (which < 0 || which > 2)
error->all("Invalid coeffs for this angle style");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(arg[0],atom->nangletypes,ilo,ihi);
int count = 0;
if (which == 0) {
if (narg != 5) error->all("Incorrect args for angle coefficients");
double theta0_one = force->numeric(arg[1]);
double k2_one = force->numeric(arg[2]);
double k3_one = force->numeric(arg[3]);
double k4_one = force->numeric(arg[4]);
// convert theta0 from degrees to radians
for (int i = ilo; i <= ihi; i++) {
theta0[i] = theta0_one/180.0 * PI;
k2[i] = k2_one;
k3[i] = k3_one;
k4[i] = k4_one;
setflag_a[i] = 1;
count++;
}
}
if (which == 1) {
if (narg != 4) error->all("Incorrect args for angle coefficients");
double bb_k_one = force->numeric(arg[1]);
double bb_r1_one = force->numeric(arg[2]);
double bb_r2_one = force->numeric(arg[3]);
for (int i = ilo; i <= ihi; i++) {
bb_k[i] = bb_k_one;
bb_r1[i] = bb_r1_one;
bb_r2[i] = bb_r2_one;
setflag_bb[i] = 1;
count++;
}
}
if (which == 2) {
if (narg != 5) error->all("Incorrect args for angle coefficients");
double ba_k1_one = force->numeric(arg[1]);
double ba_k2_one = force->numeric(arg[2]);
double ba_r1_one = force->numeric(arg[3]);
double ba_r2_one = force->numeric(arg[4]);
for (int i = ilo; i <= ihi; i++) {
ba_k1[i] = ba_k1_one;
ba_k2[i] = ba_k2_one;
ba_r1[i] = ba_r1_one;
ba_r2[i] = ba_r2_one;
setflag_ba[i] = 1;
count++;
}
}
if (count == 0) error->all("Incorrect args for angle coefficients");
for (int i = ilo; i <= ihi; i++)
if (setflag_a[i] == 1 && setflag_bb[i] == 1 && setflag_ba[i] == 1)
setflag[i] = 1;
}
/* ---------------------------------------------------------------------- */
double AngleClass2::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleClass2::write_restart(FILE *fp)
{
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k2[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k3[1],sizeof(double),atom->nangletypes,fp);
fwrite(&k4[1],sizeof(double),atom->nangletypes,fp);
fwrite(&bb_k[1],sizeof(double),atom->nangletypes,fp);
fwrite(&bb_r1[1],sizeof(double),atom->nangletypes,fp);
fwrite(&bb_r2[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_k1[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_k2[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_r1[1],sizeof(double),atom->nangletypes,fp);
fwrite(&ba_r2[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleClass2::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
fread(&k2[1],sizeof(double),atom->nangletypes,fp);
fread(&k3[1],sizeof(double),atom->nangletypes,fp);
fread(&k4[1],sizeof(double),atom->nangletypes,fp);
fread(&bb_k[1],sizeof(double),atom->nangletypes,fp);
fread(&bb_r1[1],sizeof(double),atom->nangletypes,fp);
fread(&bb_r2[1],sizeof(double),atom->nangletypes,fp);
fread(&ba_k1[1],sizeof(double),atom->nangletypes,fp);
fread(&ba_k2[1],sizeof(double),atom->nangletypes,fp);
fread(&ba_r1[1],sizeof(double),atom->nangletypes,fp);
fread(&ba_r2[1],sizeof(double),atom->nangletypes,fp);
}
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k2[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k3[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&k4[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&bb_k[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&bb_r1[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&bb_r2[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_k1[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_k2[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_r1[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&ba_r2[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ---------------------------------------------------------------------- */
double AngleClass2::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
double dtheta = acos(c) - theta0[type];
double dtheta2 = dtheta*dtheta;
double dtheta3 = dtheta2*dtheta;
double dtheta4 = dtheta3*dtheta;
double energy = k2[type]*dtheta2 + k3[type]*dtheta3 + k4[type]*dtheta4;
double dr1 = r1 - bb_r1[type];
double dr2 = r2 - bb_r2[type];
energy += bb_k[type]*dr1*dr2;
energy += ba_k1[type]*dr1*dtheta + ba_k2[type]*dr2*dtheta;
return energy;
}
Event Timeline
Log In to Comment