Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92173172
Umeyama.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 18, 00:24
Size
6 KB
Mime Type
text/x-c++
Expires
Wed, Nov 20, 00:24 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22385492
Attached To
rLAMMPS lammps
Umeyama.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UMEYAMA_H
#define EIGEN_UMEYAMA_H
// This file requires the user to include
// * Eigen/Core
// * Eigen/LU
// * Eigen/SVD
// * Eigen/Array
namespace
Eigen
{
#ifndef EIGEN_PARSED_BY_DOXYGEN
// These helpers are required since it allows to use mixed types as parameters
// for the Umeyama. The problem with mixed parameters is that the return type
// cannot trivially be deduced when float and double types are mixed.
namespace
internal
{
// Compile time return type deduction for different MatrixBase types.
// Different means here different alignment and parameters but the same underlying
// real scalar type.
template
<
typename
MatrixType
,
typename
OtherMatrixType
>
struct
umeyama_transform_matrix_type
{
enum
{
MinRowsAtCompileTime
=
EIGEN_SIZE_MIN_PREFER_DYNAMIC
(
MatrixType
::
RowsAtCompileTime
,
OtherMatrixType
::
RowsAtCompileTime
),
// When possible we want to choose some small fixed size value since the result
// is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
HomogeneousDimension
=
int
(
MinRowsAtCompileTime
)
==
Dynamic
?
Dynamic
:
int
(
MinRowsAtCompileTime
)
+
1
};
typedef
Matrix
<
typename
traits
<
MatrixType
>::
Scalar
,
HomogeneousDimension
,
HomogeneousDimension
,
AutoAlign
|
(
traits
<
MatrixType
>::
Flags
&
RowMajorBit
?
RowMajor
:
ColMajor
),
HomogeneousDimension
,
HomogeneousDimension
>
type
;
};
}
#endif
/**
* \geometry_module \ingroup Geometry_Module
*
* \brief Returns the transformation between two point sets.
*
* The algorithm is based on:
* "Least-squares estimation of transformation parameters between two point patterns",
* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
*
* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
* \f{align*}
* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
* \f}
* is minimized.
*
* The algorithm is based on the analysis of the covariance matrix
* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
* \f$d\f$ is corresponding to the dimension (which is typically small).
* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
* though the actual computational effort lies in the covariance
* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when
* the input point sets have dimension \f$d \times m\f$.
*
* Currently the method is working only for floating point matrices.
*
* \todo Should the return type of umeyama() become a Transform?
*
* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
* \return The homogeneous transformation
* \f{align*}
* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
* \f}
* minimizing the resudiual above. This transformation is always returned as an
* Eigen::Matrix.
*/
template
<
typename
Derived
,
typename
OtherDerived
>
typename
internal
::
umeyama_transform_matrix_type
<
Derived
,
OtherDerived
>::
type
umeyama
(
const
MatrixBase
<
Derived
>&
src
,
const
MatrixBase
<
OtherDerived
>&
dst
,
bool
with_scaling
=
true
)
{
typedef
typename
internal
::
umeyama_transform_matrix_type
<
Derived
,
OtherDerived
>::
type
TransformationMatrixType
;
typedef
typename
internal
::
traits
<
TransformationMatrixType
>::
Scalar
Scalar
;
typedef
typename
NumTraits
<
Scalar
>::
Real
RealScalar
;
typedef
typename
Derived
::
Index
Index
;
EIGEN_STATIC_ASSERT
(
!
NumTraits
<
Scalar
>::
IsComplex
,
NUMERIC_TYPE_MUST_BE_REAL
)
EIGEN_STATIC_ASSERT
((
internal
::
is_same
<
Scalar
,
typename
internal
::
traits
<
OtherDerived
>::
Scalar
>::
value
),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY
)
enum
{
Dimension
=
EIGEN_SIZE_MIN_PREFER_DYNAMIC
(
Derived
::
RowsAtCompileTime
,
OtherDerived
::
RowsAtCompileTime
)
};
typedef
Matrix
<
Scalar
,
Dimension
,
1
>
VectorType
;
typedef
Matrix
<
Scalar
,
Dimension
,
Dimension
>
MatrixType
;
typedef
typename
internal
::
plain_matrix_type_row_major
<
Derived
>::
type
RowMajorMatrixType
;
const
Index
m
=
src
.
rows
();
// dimension
const
Index
n
=
src
.
cols
();
// number of measurements
// required for demeaning ...
const
RealScalar
one_over_n
=
RealScalar
(
1
)
/
static_cast
<
RealScalar
>
(
n
);
// computation of mean
const
VectorType
src_mean
=
src
.
rowwise
().
sum
()
*
one_over_n
;
const
VectorType
dst_mean
=
dst
.
rowwise
().
sum
()
*
one_over_n
;
// demeaning of src and dst points
const
RowMajorMatrixType
src_demean
=
src
.
colwise
()
-
src_mean
;
const
RowMajorMatrixType
dst_demean
=
dst
.
colwise
()
-
dst_mean
;
// Eq. (36)-(37)
const
Scalar
src_var
=
src_demean
.
rowwise
().
squaredNorm
().
sum
()
*
one_over_n
;
// Eq. (38)
const
MatrixType
sigma
=
one_over_n
*
dst_demean
*
src_demean
.
transpose
();
JacobiSVD
<
MatrixType
>
svd
(
sigma
,
ComputeFullU
|
ComputeFullV
);
// Initialize the resulting transformation with an identity matrix...
TransformationMatrixType
Rt
=
TransformationMatrixType
::
Identity
(
m
+
1
,
m
+
1
);
// Eq. (39)
VectorType
S
=
VectorType
::
Ones
(
m
);
if
(
sigma
.
determinant
()
<
Scalar
(
0
))
S
(
m
-
1
)
=
Scalar
(
-
1
);
// Eq. (40) and (43)
const
VectorType
&
d
=
svd
.
singularValues
();
Index
rank
=
0
;
for
(
Index
i
=
0
;
i
<
m
;
++
i
)
if
(
!
internal
::
isMuchSmallerThan
(
d
.
coeff
(
i
),
d
.
coeff
(
0
)))
++
rank
;
if
(
rank
==
m
-
1
)
{
if
(
svd
.
matrixU
().
determinant
()
*
svd
.
matrixV
().
determinant
()
>
Scalar
(
0
)
)
{
Rt
.
block
(
0
,
0
,
m
,
m
).
noalias
()
=
svd
.
matrixU
()
*
svd
.
matrixV
().
transpose
();
}
else
{
const
Scalar
s
=
S
(
m
-
1
);
S
(
m
-
1
)
=
Scalar
(
-
1
);
Rt
.
block
(
0
,
0
,
m
,
m
).
noalias
()
=
svd
.
matrixU
()
*
S
.
asDiagonal
()
*
svd
.
matrixV
().
transpose
();
S
(
m
-
1
)
=
s
;
}
}
else
{
Rt
.
block
(
0
,
0
,
m
,
m
).
noalias
()
=
svd
.
matrixU
()
*
S
.
asDiagonal
()
*
svd
.
matrixV
().
transpose
();
}
if
(
with_scaling
)
{
// Eq. (42)
const
Scalar
c
=
Scalar
(
1
)
/
src_var
*
svd
.
singularValues
().
dot
(
S
);
// Eq. (41)
Rt
.
col
(
m
).
head
(
m
)
=
dst_mean
;
Rt
.
col
(
m
).
head
(
m
).
noalias
()
-=
c
*
Rt
.
topLeftCorner
(
m
,
m
)
*
src_mean
;
Rt
.
block
(
0
,
0
,
m
,
m
)
*=
c
;
}
else
{
Rt
.
col
(
m
).
head
(
m
)
=
dst_mean
;
Rt
.
col
(
m
).
head
(
m
).
noalias
()
-=
Rt
.
topLeftCorner
(
m
,
m
)
*
src_mean
;
}
return
Rt
;
}
}
// end namespace Eigen
#endif
// EIGEN_UMEYAMA_H
Event Timeline
Log In to Comment