Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92175467
loop_cartesian.pyx
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 18, 00:56
Size
29 KB
Mime Type
text/x-python
Expires
Wed, Nov 20, 00:56 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22387135
Attached To
rCTRACKER ctracker3
loop_cartesian.pyx
View Options
###########################################################################
# #
# Copyright 2017 Andrea Cimatoribus #
# EPFL ENAC IIE ECOL #
# GR A1 435 (Batiment GR) #
# Station 2 #
# CH-1015 Lausanne #
# Andrea.Cimatoribus@epfl.ch #
# #
# This file is part of ctracker #
# #
# ctracker is free software: you can redistribute it and/or modify it #
# under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# (at your option) any later version. #
# #
# ctracker is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty #
# of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. #
# See the GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with ctracker. If not, see <http://www.gnu.org/licenses/>. #
# #
###########################################################################
from
cython
cimport
wraparound
,
boundscheck
,
cdivision
from
libc.math
cimport
log
,
exp
,
abs
,
fmin
from
libc.stdio
cimport
printf
from
libc.stdlib
cimport
exit
,
EXIT_FAILURE
@wraparound
(
False
)
@boundscheck
(
False
)
@cdivision
(
True
)
cdef
(
double
,
double
,
double
,
double
) \
cross
(
int
ijk
,
int
ia
,
int
ja
,
int
ka
,
double
i_futr
,
double
i_past
,
double
r0
,
double
[:,
:,
:,
::
1
]
flux
)
nogil
:
"""
Compute crossing times
"""
# um: flux entering the cell
# uu: flux exiting the cell
# i_futr: interpolation coefficient for "future" GCM data
# i_past: interpolation coefficient for "past" GCM data
cdef
double
uu
,
um
,
ba
,
sp
,
sn
,
Du
,
ii
cdef
double
UNDEF
=
1.0e20
um
=
(
i_futr
*
flux
[
1
,
ka
,
ja
,
ia
]
+
i_past
*
flux
[
0
,
ka
,
ja
,
ia
])
if
(
ijk
==
1
):
ii
=
ia
uu
=
(
i_futr
*
flux
[
1
,
ka
,
ja
,
ia
+
1
]
+
i_past
*
flux
[
0
,
ka
,
ja
,
ia
+
1
])
elif
(
ijk
==
2
):
ii
=
ja
uu
=
(
i_futr
*
flux
[
1
,
ka
,
ja
+
1
,
ia
]
+
i_past
*
flux
[
0
,
ka
,
ja
+
1
,
ia
])
elif
(
ijk
==
3
):
ii
=
ka
uu
=
(
i_futr
*
flux
[
1
,
ka
+
1
,
ja
,
ia
]
+
i_past
*
flux
[
0
,
ka
+
1
,
ja
,
ia
])
# east, north or upward crossing
if
(
uu
>
0.0
)
and
(
r0
!=
(
ii
+
1
)):
if
um
!=
uu
:
Du
=
(
uu
-
um
)
ba
=
(
r0
-
ii
)
*
Du
+
um
if
ba
>
0.0
:
# eq. 7.9 & 7.6 Doos et al. 2013
sp
=
(
log
(
uu
)
-
log
(
ba
))
/
Du
# It can still be that there is a
# zero flux somewhere between r0 and
# the face
if
(
sp
<=
0.0
):
sp
=
UNDEF
else
:
sp
=
UNDEF
else
:
sp
=
(
1.0
+
ii
-
r0
)
/
uu
else
:
sp
=
UNDEF
# west, south or downward crossing
if
(
um
<
0.0
)
and
(
r0
!=
ii
):
if
um
!=
uu
:
# negative velocity, so we go from exit (uu)
# to enter (um)
Du
=
(
um
-
uu
)
# (ii)-----(r0)---(ii+1)
# (um)-----(ba)---(uu)
ba
=
(
1
+
ii
-
r0
)
*
Du
+
uu
if
ba
<
0.0
:
sn
=
(
log
(
-
ba
)
-
log
(
-
um
))
/
Du
# It can still be that there is a
# zero flux somewhere between r0 and
# the face
if
(
sn
<=
0.0
):
sn
=
UNDEF
else
:
sn
=
UNDEF
else
:
sn
=
(
ii
-
r0
)
/
uu
else
:
sn
=
UNDEF
return
uu
,
um
,
sp
,
sn
@cdivision
(
True
)
cdef
double
newpos
(
int
ii
,
double
r0
,
double
ds
,
double
uu
,
double
um
)
nogil
:
"""
Compute new position along ijk direction
"""
# um: flux entering the cell
# uu: flux exiting the cell
cdef
double
ba
,
Du
,
Dum
if
um
!=
uu
:
Du
=
uu
-
um
mDu
=
um
/
Du
# eq. 7.8 Doos et al 2013
return
(
r0
-
ii
+
mDu
)
*
exp
(
Du
*
ds
)
+
ii
-
mDu
else
:
return
r0
+
uu
*
ds
@wraparound
(
False
)
@boundscheck
(
False
)
def
transform_cartesian
(
double
[:]
ii
,
double
[:]
jj
,
double
[:]
kk
,
float
[:,
::
1
]
X
,
float
[:,
::
1
]
Y
,
float
[:,
::
1
]
dX
,
float
[:,
::
1
]
dY
,
float
[:,
:,
::
1
]
Z
,
double
[:,
::
1
]
stxyz
):
cdef
int
m
cdef
int
N
=
ii
.
size
for
m
in
range
(
N
):
transform_one
(
ii
[
m
],
jj
[
m
],
kk
[
m
],
X
,
Y
,
dX
,
dY
,
Z
,
stxyz
[
m
,
:])
@wraparound
(
False
)
@boundscheck
(
False
)
cdef
void
transform_one
(
double
i
,
double
j
,
double
k
,
float
[:,
::
1
]
X
,
float
[:,
::
1
]
Y
,
float
[:,
::
1
]
dX
,
float
[:,
::
1
]
dY
,
float
[:,
:,
::
1
]
Z
,
double
[:]
stxyz
)
nogil
:
cdef
int
ii_int
,
jj_int
,
kk_int
cdef
double
nx
,
ny
,
px
,
py
,
pxpy
,
pxny
,
nxpy
,
nxny
,
nz
cdef
double
dxij
,
dyij
ii_int
=
int
(
i
)
jj_int
=
int
(
j
)
kk_int
=
int
(
k
)
nx
=
i
%
1
ny
=
j
%
1
nz
=
k
%
1
# inside the cell
if
(
nx
>=
1e-9
)
&
(
ny
>=
1e-9
):
dxij
=
dX
[
jj_int
,
ii_int
]
dyij
=
dY
[
jj_int
,
ii_int
]
# x
stxyz
[
0
]
=
X
[
jj_int
,
ii_int
]
+
dxij
*
nx
# y
stxyz
[
1
]
=
Y
[
jj_int
,
ii_int
]
+
dyij
*
ny
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk_int
,
jj_int
,
ii_int
]
+
\
nz
*
Z
[
kk_int
+
1
,
jj_int
,
ii_int
]
else
:
stxyz
[
2
]
=
Z
[
kk_int
,
jj_int
,
ii_int
]
# at the SW corner
elif
(
nx
<
1e-9
)
&
(
ny
<
1e-9
):
# x
stxyz
[
0
]
=
X
[
jj_int
,
ii_int
]
# y
stxyz
[
1
]
=
Y
[
jj_int
,
ii_int
]
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk_int
,
jj_int
,
ii_int
]
+
\
nz
*
Z
[
kk_int
+
1
,
jj_int
,
ii_int
]
else
:
stxyz
[
2
]
=
Z
[
kk_int
,
jj_int
,
ii_int
]
# on W face
elif
nx
<
1e-9
:
dyij
=
dY
[
jj_int
,
ii_int
]
# x
stxyz
[
0
]
=
X
[
jj_int
,
ii_int
]
# y
stxyz
[
1
]
=
Y
[
jj_int
,
ii_int
]
+
dyij
*
ny
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk_int
,
jj_int
,
ii_int
]
+
\
nz
*
Z
[
kk_int
+
1
,
jj_int
,
ii_int
]
else
:
stxyz
[
2
]
=
Z
[
kk_int
,
jj_int
,
ii_int
]
# on S face
else
:
dxij
=
dX
[
jj_int
,
ii_int
]
# x
stxyz
[
0
]
=
X
[
jj_int
,
ii_int
]
+
dxij
*
nx
# y
stxyz
[
1
]
=
Y
[
jj_int
,
ii_int
]
# z
if
nz
>=
1e-9
:
stxyz
[
2
]
=
(
1.0
-
nz
)
*
Z
[
kk_int
,
jj_int
,
ii_int
]
+
\
nz
*
Z
[
kk_int
+
1
,
jj_int
,
ii_int
]
else
:
stxyz
[
2
]
=
Z
[
kk_int
,
jj_int
,
ii_int
]
@wraparound
(
False
)
@boundscheck
(
False
)
@cdivision
(
True
)
cdef
void
loop_particle
(
double
[:,
::
1
]
xyz
,
short
[:,
::
1
]
ijk
,
double
[:,
:,
::
1
]
out_tijk
,
double
[:,
:,
::
1
]
out_xyz
,
short
[:]
out_code
,
int
imax
,
int
jmax
,
int
kmax
,
double
out_dt
,
float
[:,
:,
::
1
]
Adsmax
,
float
[:,
:,
::
1
]
Adxyz
,
double
[:,
:,
:,
::
1
]
uflux
,
double
[:,
:,
:,
::
1
]
vflux
,
double
[:,
:,
:,
::
1
]
wflux
,
double
dtmax
,
double
dstep
,
int
nend
,
double
[:]
iendw
,
double
[:]
iende
,
double
[:]
jends
,
double
[:]
jendn
,
int
outfreq
,
int
nvals
,
int
subiters
,
float
[:,
::
1
]
xG
,
float
[:,
::
1
]
yG
,
float
[:,
::
1
]
dX
,
float
[:,
::
1
]
dY
,
float
[:,
:,
::
1
]
Z
)
nogil
:
cdef
double
x0
,
y0
,
z0
,
x1
,
y1
,
z1
,
ts
,
tt
,
dt
cdef
double
i_futr
,
i_past
,
in_futr
,
in_past
cdef
double
dsmax
,
dxyz
cdef
double
uu1
,
um1
,
vu1
,
vm1
,
wu1
,
wm1
,
uu
cdef
double
ds
,
dse
,
dsw
,
dsn
,
dss
,
dsu
,
dsd
cdef
int
ia
,
ja
,
ka
,
ib
,
jb
,
kb
,
rec_out
,
kk
cdef
int
scrivi
,
kill_area
cdef
long
ntrac
,
ntact
=
xyz
.
shape
[
0
]
for
ntrac
in
range
(
ntact
):
# initialize stuff
ts
=
0.0
# normalised time between two GCM time steps
tt
=
0.0
# time in seconds between two GCM time steps
# output init
for
kk
in
range
(
nvals
):
out_tijk
[
ntrac
,
kk
,
0
]
=
-
1e20
rec_out
=
0
# take coord
# the coordinate system is as follows:
# cell i
# |---------------------|
# i i <= x < i+1 i+1
x1
=
xyz
[
ntrac
,
0
]
y1
=
xyz
[
ntrac
,
1
]
z1
=
xyz
[
ntrac
,
2
]
ib
=
ijk
[
ntrac
,
0
]
jb
=
ijk
[
ntrac
,
1
]
kb
=
ijk
[
ntrac
,
2
]
scrivi
=
0
while
True
:
# if we reached the new GCM output
if
tt
==
out_dt
:
xyz
[
ntrac
,
0
]
=
x1
xyz
[
ntrac
,
1
]
=
y1
xyz
[
ntrac
,
2
]
=
z1
ijk
[
ntrac
,
0
]
=
ib
ijk
[
ntrac
,
1
]
=
jb
ijk
[
ntrac
,
2
]
=
kb
break
# time interpolation constants
i_futr
=
ts
%
1.0
i_past
=
1.0
-
i_futr
x0
=
x1
y0
=
y1
z0
=
z1
ia
=
ib
ja
=
jb
ka
=
kb
dsmax
=
Adsmax
[
kb
,
jb
,
ib
]
dxyz
=
Adxyz
[
kb
,
jb
,
ib
]
# make sure we do not start from land
#TODO do we still need this?
if
dxyz
==
0.0
:
printf
(
"
\n
x0:
%f
\n
"
,
x0
)
printf
(
"y0:
%f
\n
"
,
y0
)
printf
(
"z0:
%f
\n
"
,
z0
)
printf
(
"ia:
%d
\n
"
,
ia
)
printf
(
"ja:
%d
\n
"
,
ja
)
printf
(
"ka:
%d
\n
"
,
ka
)
printf
(
"x1:
%f
\n
"
,
x1
)
printf
(
"y1:
%f
\n
"
,
y1
)
printf
(
"z1:
%f
\n
"
,
z1
)
printf
(
"ib:
%d
\n
"
,
ib
)
printf
(
"jb:
%d
\n
"
,
jb
)
printf
(
"kb:
%d
\n
"
,
kb
)
printf
(
"ds:
%f
\n
"
,
ds
)
printf
(
"dsmax:
%f
\n
"
,
dsmax
)
printf
(
"dxyz:
%f
\n
"
,
dxyz
)
printf
(
"dsn:
%f
\n
"
,
dsn
)
printf
(
"dss:
%f
\n
"
,
dss
)
printf
(
"dse:
%f
\n
"
,
dse
)
printf
(
"dsw:
%f
\n
"
,
dsw
)
printf
(
"dsu:
%f
\n
"
,
dsu
)
printf
(
"dsd:
%f
\n
"
,
dsd
)
printf
(
"Particle on land."
)
exit
(
EXIT_FAILURE
)
#
# calculate the 3 crossing times over the box
# choose the shortest time and calculate the
# new positions
#
# solving the differential equations
# note:
# space variables (x,...) are dimensionless
# time variables (ds,...) are in seconds/m^3
#
uu1
,
um1
,
dse
,
dsw
=
\
cross
(
1
,
ia
,
ja
,
ka
,
i_futr
,
i_past
,
x0
,
uflux
)
vu1
,
vm1
,
dsn
,
dss
=
\
cross
(
2
,
ia
,
ja
,
ka
,
i_futr
,
i_past
,
y0
,
vflux
)
wu1
,
wm1
,
dsu
,
dsd
=
\
cross
(
3
,
ia
,
ja
,
ka
,
i_futr
,
i_past
,
z0
,
wflux
)
ds
=
fmin
(
fmin
(
fmin
(
fmin
(
fmin
(
fmin
(
dse
,
dsw
),
dsn
),
dss
),
dsd
),
dsu
),
dsmax
)
if
(
ds
==
0.0
)
or
(
ds
==
1e20
):
printf
(
"
\n
x0:
%f
\n
"
,
x0
)
printf
(
"y0:
%f
\n
"
,
y0
)
printf
(
"z0:
%f
\n
"
,
z0
)
printf
(
"ia:
%d
\n
"
,
ia
)
printf
(
"ja:
%d
\n
"
,
ja
)
printf
(
"ka:
%d
\n
"
,
ka
)
printf
(
"x1:
%f
\n
"
,
x1
)
printf
(
"y1:
%f
\n
"
,
y1
)
printf
(
"z1:
%f
\n
"
,
z1
)
printf
(
"ib:
%d
\n
"
,
ib
)
printf
(
"jb:
%d
\n
"
,
jb
)
printf
(
"kb:
%d
\n
"
,
kb
)
printf
(
"ds:
%f
\n
"
,
ds
)
printf
(
"dsmax:
%f
\n
"
,
dsmax
)
printf
(
"dxyz:
%f
\n
"
,
dxyz
)
printf
(
"dsn:
%f
\n
"
,
dsn
)
printf
(
"dss:
%f
\n
"
,
dss
)
printf
(
"dse:
%f
\n
"
,
dse
)
printf
(
"dsw:
%f
\n
"
,
dsw
)
printf
(
"dsu:
%f
\n
"
,
dsu
)
printf
(
"dsd:
%f
\n
"
,
dsd
)
printf
(
"Cannot integrate track for unknown reasons
\n
"
)
exit
(
EXIT_FAILURE
)
# now update the time
dt
=
ds
*
dxyz
# if time step makes the integration time
# very close to the GCM output
if
(
tt
+
dt
)
>=
out_dt
:
dt
=
out_dt
-
tt
tt
=
out_dt
ts
=
1.0
ds
=
dt
/
dxyz
end_loop
=
True
else
:
end_loop
=
False
tt
+=
dt
if
dt
==
dtmax
:
ts
+=
dstep
else
:
ts
+=
dt
/
out_dt
# compute new time interpolation constant
in_futr
=
ts
%
1.0
in_past
=
1.0
-
in_futr
# now we actually compute the new position
# eastward grid-cell exit
if
ds
==
dse
:
scrivi
=
1
# if at the "new time" the flow at the cell
# face is positive the particle will exit
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
#TODO: corner cases are extremely rare, but
# may happen. Is there a better way to deal with them?
if
(
y1
-
ja
)
>=
1.0
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0.0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
if
(
z1
-
ka
)
>=
1.0
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0.0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# westward grid-cell exit
elif
ds
==
dsw
:
scrivi
=
1
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
if
(
y1
-
ja
)
>=
1.0
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0.0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
if
(
z1
-
ka
)
>=
1.0
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0.0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# northward grid-cell exit
elif
ds
==
dsn
:
scrivi
=
1
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
float
(
ja
+
1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1.0
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0.0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
z1
-
ka
)
>=
1.0
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0.0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# southward grid-cell exit
elif
ds
==
dss
:
scrivi
=
1
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
float
(
ja
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1.0
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0.0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
z1
-
ka
)
>=
1.0
:
# z
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
z1
=
float
(
ka
+
1
)
elif
(
z1
-
ka
)
<=
0.0
:
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
z1
=
float
(
ka
)
# upward grid-cell exit
elif
ds
==
dsu
:
scrivi
=
1
uu
=
(
in_futr
*
wflux
[
1
,
ka
+
1
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
+
1
,
ja
,
ia
])
if
uu
>
0.0
:
kb
=
ka
+
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
float
(
ka
+
1
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1.0
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0.0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
y1
-
ja
)
>=
1.0
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0.0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
# downward grid-cell exit
elif
ds
==
dsd
:
scrivi
=
1
uu
=
(
in_futr
*
wflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
wflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
kb
=
ka
-
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
float
(
ka
)
# deal with corner cases (including rounding error)
if
(
x1
-
ia
)
>=
1.0
:
# x
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
+
1
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
+
1
])
if
uu
>
0.0
:
ib
=
ia
+
1
x1
=
float
(
ia
+
1
)
elif
(
x1
-
ia
)
<=
0.0
:
uu
=
(
in_futr
*
uflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
uflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
ib
=
ia
-
1
x1
=
float
(
ia
)
if
(
y1
-
ja
)
>=
1.0
:
# y
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
+
1
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
+
1
,
ia
])
if
uu
>
0.0
:
jb
=
ja
+
1
y1
=
float
(
ja
+
1
)
elif
(
y1
-
ja
)
<=
0.0
:
uu
=
(
in_futr
*
vflux
[
1
,
ka
,
ja
,
ia
]
+
in_past
*
vflux
[
0
,
ka
,
ja
,
ia
])
if
uu
<
0.0
:
jb
=
ja
-
1
y1
=
float
(
ja
)
elif
end_loop
or
(
ds
==
dsmax
):
scrivi
=
1
x1
=
newpos
(
ia
,
x0
,
ds
,
uu1
,
um1
)
y1
=
newpos
(
ja
,
y0
,
ds
,
vu1
,
vm1
)
z1
=
newpos
(
ka
,
z0
,
ds
,
wu1
,
wm1
)
#TODO for 2D advection we will need to include
# the check for convergence/divergence zones
else
:
printf
(
"
\n
Unrecognised ds
\n
"
)
printf
(
"ds:
%f
\n
"
,
ds
)
printf
(
"dsmax:
%f
\n
"
,
dsmax
)
printf
(
"dxyz:
%f
\n
"
,
dxyz
)
printf
(
"dsn:
%f
\n
"
,
dsn
)
printf
(
"dss:
%f
\n
"
,
dss
)
printf
(
"dse:
%f
\n
"
,
dse
)
printf
(
"dsw:
%f
\n
"
,
dsw
)
printf
(
"dsu:
%f
\n
"
,
dsu
)
printf
(
"dsd:
%f
\n
"
,
dsd
)
exit
(
EXIT_FAILURE
)
# check if particle entered a kill area
kill_area
=
0
for
kk
in
range
(
nend
):
if
(
iendw
[
kk
]
<=
x1
)
and
\
(
x1
<=
iende
[
kk
])
and
\
(
jends
[
kk
]
<=
y1
)
and
\
(
y1
<=
jendn
[
kk
]):
# we store the region where it was killed
kill_area
=
10
+
kk
break
# break the for loop over kill areas
if
kill_area
>
0
:
# write to buffer
if
rec_out
>=
nvals
:
printf
(
"Kill region: buffer finished, make it larger!"
)
exit
(
EXIT_FAILURE
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
out_code
[
ntrac
]
=
kill_area
transform_one
(
x1
,
y1
,
z1
,
xG
,
yG
,
dX
,
dY
,
Z
,
out_xyz
[
ntrac
,
rec_out
,
:])
rec_out
+=
1
break
# break particle loop
# check if the particle is still
# inside the domain
if
(
ib
>
imax
)
or
(
ib
<
0
)
or
\
(
jb
>
jmax
)
or
(
jb
<
0
):
# write to buffer
if
rec_out
>=
nvals
:
printf
(
"Exit domain: buffer finished, make it larger!"
)
exit
(
EXIT_FAILURE
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
out_code
[
ntrac
]
=
1
transform_one
(
x1
,
y1
,
z1
,
xG
,
yG
,
dX
,
dY
,
Z
,
out_xyz
[
ntrac
,
rec_out
,
:])
rec_out
+=
1
break
# check if the particle exited through the top
if
(
kb
>=
kmax
):
# write to buffer
#TODO there should be a better way to deal with the
# top boundary condition
if
rec_out
>=
nvals
:
printf
(
"Airborne: buffer finished, make it larger!"
)
exit
(
EXIT_FAILURE
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
out_code
[
ntrac
]
=
2
transform_one
(
x1
,
y1
,
z1
,
xG
,
yG
,
dX
,
dY
,
Z
,
out_xyz
[
ntrac
,
rec_out
,
:])
rec_out
+=
1
break
# At the end of the cycle we can write the
# position of the particle in buffer
# gcmstep => outfreq == 1
# always => outfreq == 2
# cross => outfreq == 3
if
((
tt
==
out_dt
)
and
(
outfreq
==
1
))
\
or
((
outfreq
==
3
)
and
(
scrivi
==
1
))
\
or
((
outfreq
==
2
)
and
(
ts
>
0.0
)):
# write to buffer
if
rec_out
>=
nvals
:
printf
(
"Normal write: buffer finished, make it larger!"
)
exit
(
EXIT_FAILURE
)
out_tijk
[
ntrac
,
rec_out
,
0
]
=
tt
out_tijk
[
ntrac
,
rec_out
,
1
]
=
x1
out_tijk
[
ntrac
,
rec_out
,
2
]
=
y1
out_tijk
[
ntrac
,
rec_out
,
3
]
=
z1
transform_one
(
x1
,
y1
,
z1
,
xG
,
yG
,
dX
,
dY
,
Z
,
out_xyz
[
ntrac
,
rec_out
,
:])
rec_out
+=
1
def
loopC_nogil
(
double
[:,
::
1
]
xyz
,
short
[:,
::
1
]
ijk
,
double
[:,
:,
::
1
]
out_tijk
,
double
[:,
:,
::
1
]
out_xyz
,
short
[:]
out_code
,
int
imax
,
int
jmax
,
int
kmax
,
double
out_dt
,
float
[:,
:,
::
1
]
Adsmax
,
float
[:,
:,
::
1
]
Adxyz
,
double
[:,
:,
:,
::
1
]
uflux
,
double
[:,
:,
:,
::
1
]
vflux
,
double
[:,
:,
:,
::
1
]
wflux
,
double
dtmax
,
double
dstep
,
int
nend
,
double
[:]
iendw
,
double
[:]
iende
,
double
[:]
jends
,
double
[:]
jendn
,
int
outfreq
,
int
nvals
,
int
subiters
,
float
[:,
::
1
]
xG
,
float
[:,
::
1
]
yG
,
float
[:,
::
1
]
dX
,
float
[:,
::
1
]
dY
,
float
[:,
:,
::
1
]
Z
):
"""
Kill the GIL
"""
with
nogil
:
loop_particle
(
xyz
,
ijk
,
out_tijk
,
out_xyz
,
out_code
,
imax
,
jmax
,
kmax
,
out_dt
,
Adsmax
,
Adxyz
,
uflux
,
vflux
,
wflux
,
dtmax
,
dstep
,
nend
,
iendw
,
iende
,
jends
,
jendn
,
outfreq
,
nvals
,
subiters
,
xG
,
yG
,
dX
,
dY
,
Z
)
Event Timeline
Log In to Comment