Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92315828
mesh.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 19, 08:35
Size
16 KB
Mime Type
text/x-c
Expires
Thu, Nov 21, 08:35 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22415872
Attached To
rAKA akantu
mesh.cc
View Options
/**
* @file mesh.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Fri Oct 02 2015
*
* @brief class handling meshes
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <sstream>
#include "aka_config.hh"
/* -------------------------------------------------------------------------- */
#include "mesh.hh"
#include "group_manager_inline_impl.cc"
#include "mesh_io.hh"
#include "element_class.hh"
#include "static_communicator.hh"
#include "element_group.hh"
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
# include "dumper_field.hh"
# include "dumper_internal_material_field.hh"
#endif
/* -------------------------------------------------------------------------- */
__BEGIN_AKANTU__
const Element ElementNull(_not_defined, 0);
/* -------------------------------------------------------------------------- */
void Element::printself(std::ostream & stream, int indent) const {
std::string space;
for(Int i = 0; i < indent; i++, space += AKANTU_INDENT);
stream << space << "Element [" << type << ", " << element << ", " << ghost_type << "]";
}
/* -------------------------------------------------------------------------- */
Mesh::Mesh(UInt spatial_dimension,
const ID & id,
const MemoryID & memory_id) :
Memory(id, memory_id),
GroupManager(*this, id + ":group_manager", memory_id),
nodes_global_ids(NULL), nodes_type(0, 1, id + ":nodes_type"),
created_nodes(true),
connectivities("connectivities", id),
normals("normals", id),
spatial_dimension(spatial_dimension),
types_offsets(Array<UInt>((UInt) _max_element_type + 1, 1)),
ghost_types_offsets(Array<UInt>((UInt) _max_element_type + 1, 1)),
lower_bounds(spatial_dimension,0.),
upper_bounds(spatial_dimension,0.),
size(spatial_dimension, 0.),
local_lower_bounds(spatial_dimension,0.),
local_upper_bounds(spatial_dimension,0.),
mesh_data("mesh_data", id, memory_id),
mesh_facets(NULL) {
AKANTU_DEBUG_IN();
this->nodes = &(alloc<Real>(id + ":coordinates", 0, this->spatial_dimension));
nb_global_nodes = 0;
init();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Mesh::Mesh(UInt spatial_dimension,
const ID & nodes_id,
const ID & id,
const MemoryID & memory_id) :
Memory(id, memory_id),
GroupManager(*this, id + ":group_manager", memory_id),
nodes_global_ids(NULL), nodes_type(0, 1, id + ":nodes_type"),
created_nodes(false),
connectivities("connectivities", id),
normals("normals", id),
spatial_dimension(spatial_dimension),
types_offsets(Array<UInt>((UInt) _max_element_type + 1, 1)),
ghost_types_offsets(Array<UInt>((UInt) _max_element_type + 1, 1)),
lower_bounds(spatial_dimension,0.),
upper_bounds(spatial_dimension,0.),
size(spatial_dimension, 0.),
local_lower_bounds(spatial_dimension,0.),
local_upper_bounds(spatial_dimension,0.),
mesh_data("mesh_data", id, memory_id),
mesh_facets(NULL) {
AKANTU_DEBUG_IN();
this->nodes = &(getArray<Real>(nodes_id));
nb_global_nodes = nodes->getSize();
init();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Mesh::Mesh(UInt spatial_dimension,
Array<Real> & nodes,
const ID & id,
const MemoryID & memory_id) :
Memory(id, memory_id),
GroupManager(*this, id + ":group_manager", memory_id),
nodes_global_ids(NULL), nodes_type(0, 1, id + ":nodes_type"),
created_nodes(false),
connectivities("connectivities", id),
normals("normals", id),
spatial_dimension(spatial_dimension),
types_offsets(Array<UInt>(_max_element_type + 1, 1)),
ghost_types_offsets(Array<UInt>(_max_element_type + 1, 1)),
lower_bounds(spatial_dimension,0.),
upper_bounds(spatial_dimension,0.),
size(spatial_dimension, 0.),
local_lower_bounds(spatial_dimension,0.),
local_upper_bounds(spatial_dimension,0.),
mesh_data("mesh_data", id, memory_id),
mesh_facets(NULL) {
AKANTU_DEBUG_IN();
this->nodes = &(nodes);
nb_global_nodes = nodes.getSize();
init();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Mesh & Mesh::initMeshFacets(const ID & id) {
AKANTU_DEBUG_IN();
if (!mesh_facets) {
mesh_facets = new Mesh(spatial_dimension,
*(this->nodes),
getID()+":"+id,
getMemoryID());
mesh_facets->mesh_parent = this;
mesh_facets->is_mesh_facets = true;
}
AKANTU_DEBUG_OUT();
return *mesh_facets;
}
/* -------------------------------------------------------------------------- */
void Mesh::defineMeshParent(const Mesh & mesh) {
AKANTU_DEBUG_IN();
this->mesh_parent = &mesh;
this->is_mesh_facets = true;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Mesh::init() {
this->is_mesh_facets = false;
this->mesh_parent = NULL;
this->is_distributed = false;
// computeBoundingBox();
}
/* -------------------------------------------------------------------------- */
Mesh::~Mesh() {
AKANTU_DEBUG_IN();
delete mesh_facets;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Mesh::read (const std::string & filename, const MeshIOType & mesh_io_type) {
MeshIO mesh_io;
mesh_io.read(filename, *this, mesh_io_type);
type_iterator it = this->firstType(spatial_dimension, _not_ghost, _ek_not_defined);
type_iterator last = this->lastType(spatial_dimension, _not_ghost, _ek_not_defined);
if(it == last) AKANTU_EXCEPTION("The mesh contained in the file " << filename
<< " does not seem to be of the good dimension."
<< " No element of dimension " << spatial_dimension
<< " where read.");
}
/* -------------------------------------------------------------------------- */
void Mesh::write(const std::string & filename, const MeshIOType & mesh_io_type) {
MeshIO mesh_io;
mesh_io.write(filename, *this, mesh_io_type);
}
/* -------------------------------------------------------------------------- */
void Mesh::printself(std::ostream & stream, int indent) const {
std::string space;
for(Int i = 0; i < indent; i++, space += AKANTU_INDENT);
stream << space << "Mesh [" << std::endl;
stream << space << " + id : " << getID() << std::endl;
stream << space << " + spatial dimension : " << this->spatial_dimension << std::endl;
stream << space << " + nodes [" << std::endl;
nodes->printself(stream, indent+2);
stream << space << " + connectivities [" << std::endl;
connectivities.printself(stream, indent+2);
stream << space << " ]" << std::endl;
GroupManager::printself(stream, indent + 1);
stream << space << "]" << std::endl;
}
/* -------------------------------------------------------------------------- */
void Mesh::computeBoundingBox(){
AKANTU_DEBUG_IN();
for (UInt k = 0; k < spatial_dimension; ++k) {
local_lower_bounds(k) = std::numeric_limits<double>::max();
local_upper_bounds(k) = - std::numeric_limits<double>::max();
}
for (UInt i = 0; i < nodes->getSize(); ++i) {
// if(!isPureGhostNode(i))
for (UInt k = 0; k < spatial_dimension; ++k) {
local_lower_bounds(k) = std::min(local_lower_bounds[k], (*nodes)(i, k));
local_upper_bounds(k) = std::max(local_upper_bounds[k], (*nodes)(i, k));
}
}
if (this->is_distributed) {
StaticCommunicator & comm = StaticCommunicator::getStaticCommunicator();
Real reduce_bounds[2 * spatial_dimension];
for (UInt k = 0; k < spatial_dimension; ++k) {
reduce_bounds[2*k ] = local_lower_bounds(k);
reduce_bounds[2*k + 1] = - local_upper_bounds(k);
}
comm.allReduce(reduce_bounds, 2 * spatial_dimension, _so_min);
for (UInt k = 0; k < spatial_dimension; ++k) {
lower_bounds(k) = reduce_bounds[2*k];
upper_bounds(k) = - reduce_bounds[2*k + 1];
}
}
else {
this->lower_bounds = this->local_lower_bounds;
this->upper_bounds = this->local_upper_bounds;
}
size = upper_bounds - lower_bounds;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<typename T>
void Mesh::initElementTypeMapArray(ElementTypeMapArray<T> & vect,
UInt nb_component,
UInt dim,
const bool & flag_nb_node_per_elem_multiply,
ElementKind element_kind,
bool size_to_nb_element) const {
AKANTU_DEBUG_IN();
for(UInt g = _not_ghost; g <= _ghost; ++g) {
GhostType gt = (GhostType) g;
this->initElementTypeMapArray(vect, nb_component, dim, gt,
flag_nb_node_per_elem_multiply,
element_kind, size_to_nb_element);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<typename T>
void Mesh::initElementTypeMapArray(ElementTypeMapArray<T> & vect,
UInt nb_component,
UInt dim,
GhostType gt,
const bool & flag_nb_node_per_elem_multiply,
ElementKind element_kind,
bool size_to_nb_element) const {
AKANTU_DEBUG_IN();
this->initElementTypeMapArray(vect,
nb_component,
dim,
gt,
T(),
flag_nb_node_per_elem_multiply,
element_kind,
size_to_nb_element);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<typename T>
void Mesh::initElementTypeMapArray(ElementTypeMapArray<T> & vect,
UInt nb_component,
UInt dim,
GhostType gt,
const T & default_value,
const bool & flag_nb_node_per_elem_multiply,
ElementKind element_kind,
bool size_to_nb_element) const {
AKANTU_DEBUG_IN();
Mesh::type_iterator it = firstType(dim, gt, element_kind);
Mesh::type_iterator end = lastType(dim, gt, element_kind);
for(; it != end; ++it) {
ElementType type = *it;
UInt nb_comp = nb_component;
if (flag_nb_node_per_elem_multiply) nb_comp *= Mesh::getNbNodesPerElement(*it);
UInt size = 0;
if (size_to_nb_element) size = this->getNbElement(type, gt);
vect.alloc(size, nb_comp, type, gt, default_value);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Mesh::initNormals() {
this->initElementTypeMapArray(normals, spatial_dimension, spatial_dimension, false, _ek_not_defined);
}
/* -------------------------------------------------------------------------- */
void Mesh::getGlobalConnectivity(ElementTypeMapArray<UInt> & global_connectivity,
UInt dimension,
GhostType ghost_type) {
AKANTU_DEBUG_IN();
Mesh::type_iterator it = firstType(dimension, ghost_type);
Mesh::type_iterator end = lastType(dimension, ghost_type);
for(; it != end; ++it) {
ElementType type = *it;
Array<UInt> & local_conn = connectivities(type, ghost_type);
Array<UInt> & g_connectivity = global_connectivity(type, ghost_type);
if (!nodes_global_ids)
nodes_global_ids = mesh_parent->nodes_global_ids;
UInt * local_c = local_conn.storage();
UInt * global_c = g_connectivity.storage();
UInt nb_terms = local_conn.getSize() * local_conn.getNbComponent();
for (UInt i = 0; i < nb_terms; ++i, ++local_c, ++global_c)
*global_c = (*nodes_global_ids)(*local_c);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
DumperIOHelper & Mesh::getGroupDumper(const std::string & dumper_name,
const std::string & group_name){
if (group_name == "all") return this->getDumper(dumper_name);
else return element_groups[group_name]->getDumper(dumper_name);
}
/* -------------------------------------------------------------------------- */
#define AKANTU_INSTANTIATE_INIT(type) \
template void Mesh::initElementTypeMapArray<type>(ElementTypeMapArray<type> & vect, \
UInt nb_component, \
UInt dim, \
const bool & flag_nb_elem_multiply, \
ElementKind element_kind, \
bool size_to_nb_element) const; \
template void Mesh::initElementTypeMapArray<type>(ElementTypeMapArray<type> & vect, \
UInt nb_component, \
UInt dim, \
GhostType gt, \
const bool & flag_nb_elem_multiply, \
ElementKind element_kind, \
bool size_to_nb_element) const; \
template void Mesh::initElementTypeMapArray<type>(ElementTypeMapArray<type> & vect, \
UInt nb_component, \
UInt dim, \
GhostType gt, \
const type & default_value, \
const bool & flag_nb_elem_multiply, \
ElementKind element_kind, \
bool size_to_nb_element) const;
AKANTU_INSTANTIATE_INIT(Real);
AKANTU_INSTANTIATE_INIT(UInt);
AKANTU_INSTANTIATE_INIT(Int);
AKANTU_INSTANTIATE_INIT(bool);
/* -------------------------------------------------------------------------- */
template <typename T>
ElementTypeMap<UInt> Mesh::getNbDataPerElem(ElementTypeMapArray<T> & array,
const ElementKind & element_kind){
ElementTypeMap<UInt> nb_data_per_elem;
typename ElementTypeMapArray<T>::type_iterator it =
array.firstType(spatial_dimension, _not_ghost,element_kind);
typename ElementTypeMapArray<T>::type_iterator last_type =
array.lastType(spatial_dimension, _not_ghost,element_kind);
for(; it != last_type; ++it) {
UInt nb_elements = this->getNbElement(*it);
nb_data_per_elem(*it) =
array(*it).getNbComponent() *
array(*it).getSize();
nb_data_per_elem(*it) /= nb_elements;
}
return nb_data_per_elem;
}
/* -------------------------------------------------------------------------- */
template
ElementTypeMap<UInt> Mesh::getNbDataPerElem(ElementTypeMapArray<Real> & array,
const ElementKind & element_kind);
template
ElementTypeMap<UInt> Mesh::getNbDataPerElem(ElementTypeMapArray<UInt> & array,
const ElementKind & element_kind);
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
template <typename T>
dumper::Field * Mesh::createFieldFromAttachedData(const std::string & field_id,
const std::string & group_name,
const ElementKind & element_kind){
dumper::Field * field = NULL;
ElementTypeMapArray<T> * internal = NULL;
try {
internal = &(this->getData<T>(field_id));
}
catch (...){
return NULL;
}
ElementTypeMap<UInt> nb_data_per_elem =
this->getNbDataPerElem(*internal,element_kind);
field =
this->createElementalField<T, dumper::InternalMaterialField>(*internal,
group_name,
this->spatial_dimension,
element_kind,
nb_data_per_elem);
return field;
}
template dumper::Field *
Mesh::createFieldFromAttachedData<Real>(const std::string & field_id,
const std::string & group_name,
const ElementKind & element_kind);
template dumper::Field *
Mesh::createFieldFromAttachedData<UInt>(const std::string & field_id,
const std::string & group_name,
const ElementKind & element_kind);
#endif
/* -------------------------------------------------------------------------- */
__END_AKANTU__
Event Timeline
Log In to Comment