Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92423610
fem_solution.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 20, 04:35
Size
6 KB
Mime Type
text/x-python
Expires
Fri, Nov 22, 04:35 (1 d, 22 h)
Engine
blob
Format
Raw Data
Handle
22435014
Attached To
R11910 Additive Manufacturing Work
fem_solution.py
View Options
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 22 16:08:08 2021
@author: kubilay
"""
from
fenics
import
*
import
os
import
numpy
as
np
from
helpers
import
*
import
time
as
timer
import
matplotlib.pyplot
as
plt
#define simulation parameters
rho
=
4420
#kg/m^3
c_p
=
750
#J/kgK
k
=
27
#W/mK
alpha
=
k
/
(
rho
*
c_p
)
#m^2/s
time
=
0.008
#s
t_off
=
0.002984
#s
num_steps
=
40
dt
=
time
/
num_steps
#s
power
=
175
#W
tol
=
1e-14
velocity
=
0.8
*
np
.
array
([
1
,
0
,
0
])
#m/s
velocity_mag
=
np
.
linalg
.
norm
(
velocity
)
#m/s
source_loc
=
np
.
array
([
0
,
-
0.225
,
2
])
*
1e-3
-
np
.
array
([
0
,
0
,
1
])
*
1e-9
#m
#read the mesh
#mesh = Mesh('../Part_geometry/mesh/layer_005.xml') #in mm
#MeshTransformation.rescale(mesh, 1e-3, Point(0,0,0)) #in m
mesh
=
Mesh
()
filename
=
'../Part_geometry/mesh/layer_005.xdmf'
f
=
XDMFFile
(
MPI
.
comm_world
,
filename
)
f
.
read
(
mesh
)
MeshTransformation
.
rescale
(
mesh
,
1e-3
,
Point
(
0
,
0
,
0
))
#in m
#determine the limits of the domain in m
x_max
=
np
.
max
(
mesh
.
coordinates
()[:,
0
])
x_min
=
np
.
min
(
mesh
.
coordinates
()[:,
0
])
y_max
=
np
.
max
(
mesh
.
coordinates
()[:,
1
])
y_min
=
np
.
min
(
mesh
.
coordinates
()[:,
1
])
z_max
=
np
.
max
(
mesh
.
coordinates
()[:,
2
])
z_min
=
np
.
min
(
mesh
.
coordinates
()[:,
2
])
#define markers for the boundary faces
boundary_markers
=
MeshFunction
(
'size_t'
,
mesh
,
mesh
.
topology
()
.
dim
()
-
1
,
4
)
#define boundary subclasses for bottom, top and side surfaces, mark the boundaries
class
BoundaryBottom
(
SubDomain
):
def
inside
(
self
,
x
,
on_boundary
):
return
on_boundary
and
near
(
x
[
2
],
z_min
,
tol
)
b_bottom
=
BoundaryBottom
()
b_bottom
.
mark
(
boundary_markers
,
0
)
class
BoundaryTop
(
SubDomain
):
def
inside
(
self
,
x
,
on_boundary
):
return
on_boundary
and
near
(
x
[
2
],
z_max
,
tol
)
b_top
=
BoundaryTop
()
b_top
.
mark
(
boundary_markers
,
1
)
class
BoundarySides
(
SubDomain
):
def
inside
(
self
,
x
,
on_boundary
):
return
on_boundary
and
(
near
(
x
[
0
],
x_min
,
tol
)
or
near
(
x
[
0
],
x_max
,
tol
)
or
near
(
x
[
1
],
y_min
,
tol
)
or
near
(
x
[
1
],
y_max
,
tol
))
b_sides
=
BoundarySides
()
b_sides
.
mark
(
boundary_markers
,
2
)
#define function space for v
V
=
FunctionSpace
(
mesh
,
"CG"
,
1
)
#redefine d in therm of the boundary markers
ds
=
Measure
(
'ds'
,
domain
=
mesh
,
subdomain_data
=
boundary_markers
)
#define Dirichlet initial condition
T_d
=
Constant
(
0
)
#define Neumann boundary conditions
g_top
=
Constant
(
0.0
)
g_sides
=
Constant
(
0
)
#list of boundary conditions for convenience
boundary_conditions
=
{
0
:
{
'Dirichlet'
:
T_d
},
1
:
{
'Neumann'
:
g_top
},
2
:
{
'Neumann'
:
g_sides
}}
#interpolate the initial condition
T_0
=
interpolate
(
Constant
(
0.0
),
V
)
#define test and trial function and the source term
T
=
TrialFunction
(
V
)
v
=
TestFunction
(
V
)
#f = Constant(0)
#gather all Dirichlet boundary conditions in one list
bcs
=
[]
for
i
in
boundary_conditions
:
if
'Dirichlet'
in
boundary_conditions
[
i
]:
bc
=
DirichletBC
(
V
,
boundary_conditions
[
i
][
'Dirichlet'
],
boundary_markers
,
i
)
bcs
.
append
(
bc
)
#gather all Neumann boundary conditions in weak form
integrals_N
=
[]
for
i
in
boundary_conditions
:
if
'Neumann'
in
boundary_conditions
[
i
]:
g
=
boundary_conditions
[
i
][
'Neumann'
]
integrals_N
.
append
(
g
*
v
*
ds
(
i
))
#write the weak form and seperate into right- and left-hand sides
F
=
T
*
v
*
dx
+
alpha
*
dt
*
dot
(
grad
(
T
),
grad
(
v
))
*
dx
-
T_0
*
v
*
dx
-
alpha
*
dt
*
sum
(
integrals_N
)
a
,
L
=
lhs
(
F
),
rhs
(
F
)
#define the function and time
T
=
Function
(
V
)
t
=
0
#create directory to save files
try
:
os
.
mkdir
(
'results'
)
except
FileExistsError
:
for
file
in
os
.
scandir
(
'results'
):
os
.
remove
(
file
.
path
)
#define vtk file to save the data at each iteration
vtkfile_fem
=
File
(
'results/fem_temperature.pvd'
)
xdmf_file
=
XDMFFile
(
MPI
.
comm_world
,
"results/fem_temperature.xdmf"
)
xdmf_file
.
parameters
[
"flush_output"
]
=
True
xdmf_file
.
parameters
[
"functions_share_mesh"
]
=
True
xdmf_file
.
parameters
[
"rewrite_function_mesh"
]
=
False
#define arrays to store data on the points of interest
T_start
=
np
.
zeros
(
num_steps
)
T_middle
=
np
.
zeros
(
num_steps
)
T_end
=
np
.
zeros
(
num_steps
)
start_point
=
np
.
array
([
0
,
-
0.225
,
2
])
*
1e-3
-
np
.
array
([
0
,
0
,
300
])
*
1e-6
mid_point
=
np
.
array
([
1.19375
,
-
0.225
,
2
])
*
1e-3
-
np
.
array
([
0
,
0
,
300
])
*
1e-6
end_point
=
np
.
array
([
2.3875
,
-
0.225
,
2
])
*
1e-3
-
np
.
array
([
0
,
0
,
300
])
*
1e-6
#calculate time
start
=
timer
.
time
()
A
,
b
=
assemble_system
(
a
,
L
,
bcs
)
#solve the weak form for each timestep
for
n
in
range
(
num_steps
):
#assemble the equations
b
=
assemble
(
L
)
#determine the location of the source in given time
source
=
source_loc
+
velocity
*
t
#apply the source if it is on
if
t
<
t_off
:
delta
=
PointSource
(
V
,
Point
(
source
),
dt
*
power
/
(
rho
*
c_p
))
delta
.
apply
(
b
)
#solve the system
solve
(
A
,
T
.
vector
(),
b
,
"cg"
,
"jacobi"
)
#assign the temperature as the initial condition for the next step
T_0
.
assign
(
T
)
#store the temperature at points of interests
#T_start[n] = T(start_point)
#T_middle[n] = T(mid_point)
#T_end[n] = T(end_point)
#write temperature data
T
.
rename
(
"Temperature"
,
"FEM Temperature"
)
vtkfile_fem
<<
(
T
,
t
)
xdmf_file
.
write
(
T
,
t
)
#increment time and recalculate time dependent functions
t
+=
dt
T_d
.
t
=
t
g_top
.
t
=
t
#output progress
print
(
'{}% Complete'
.
format
(
round
(
100
*
n
/
num_steps
,
2
)))
#output total simulation time
print
(
'it took:'
,
timer
.
time
()
-
start
)
#print temperature evalution at points of interest
plt
.
plot
(
np
.
linspace
(
0
,
time
,
num_steps
),
T_start
/
power
,
label
=
'start point'
,
marker
=
'.'
)
plt
.
plot
(
np
.
linspace
(
0
,
time
,
num_steps
),
T_middle
/
power
,
label
=
'middle point'
,
marker
=
'.'
)
plt
.
plot
(
np
.
linspace
(
0
,
time
,
num_steps
),
T_end
/
power
,
label
=
'end point'
,
marker
=
'.'
)
plt
.
xlabel
(
r'$time (s)$'
)
plt
.
ylabel
(
"$\Delta T/P (K/W)$"
)
plt
.
legend
()
plt
.
show
()
np
.
savetxt
(
'Figures/fem_start.txt'
,
T_start
/
power
)
np
.
savetxt
(
'Figures/fem_middle.txt'
,
T_middle
/
power
)
np
.
savetxt
(
'Figures/fem_end.txt'
,
T_end
/
power
)
np
.
savetxt
(
'Figures/fem_time.txt'
,
np
.
linspace
(
0
,
t
,
num_steps
))
"""
def run_analytic_analysis(t):
analytical_temperature = MyExpression(time=t, velocity=velocity, source_loc=source_loc+velocity*t*1e3, alpha=alpha)
T = interpolate(analytical_temperature, V)
#print(np.argmax(T.vector()[:]), np.max(T.vector()[:]))
#print(T(0,0,0.5))
T_start[n] = T(0*5, 2.45*5, 0.2*5)
T_middle[n] = T(1.19375*5, 2.45*5, 0.2*5)
T_end[n] = T(2.3875*5, 2.45*5, 0.2*5)
T.rename("Temperature", "Analytic Temperature")
vtkfile_analytical << (T,t)
def run_fem_analysis(t, T):
source= np.array([0, 0, 0.5]) + velocity*t*1e3
if t < 0.001:
delta = PointSource(V, Point(source), 175)
else:
delta = PointSource(V, Point(source), 0)
delta.apply(b)
solve(A, T.vector(), b)
T_start[n] = T(0, 0, 0.34)
T_middle[n] = T(0.5, 0, 0.34)
T_end[n] = T(0.9, 0, 0.34)
T.rename("Temperature", "FEM Temperature")
vtkfile_fem << (T,t)
return T
"""
Event Timeline
Log In to Comment