Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92819520
dihedral_class2.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 23, 23:07
Size
29 KB
Mime Type
text/x-c
Expires
Mon, Nov 25, 23:07 (1 d, 13 h)
Engine
blob
Format
Raw Data
Handle
22522320
Attached To
rLAMMPS lammps
dihedral_class2.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Eric Simon (Cray)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "dihedral_class2.h"
#include "atom.h"
#include "neighbor.h"
#include "update.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
#define MAX(A,B) ((A) > (B)) ? (A) : (B)
#define TOLERANCE 0.05
#define SMALL 0.0000001
/* ---------------------------------------------------------------------- */
DihedralClass2
::
DihedralClass2
(
LAMMPS
*
lmp
)
:
Dihedral
(
lmp
)
{
PI
=
4.0
*
atan
(
1.0
);
}
/* ---------------------------------------------------------------------- */
DihedralClass2
::~
DihedralClass2
()
{
if
(
allocated
)
{
memory
->
sfree
(
setflag
);
memory
->
sfree
(
setflag_d
);
memory
->
sfree
(
setflag_mbt
);
memory
->
sfree
(
setflag_ebt
);
memory
->
sfree
(
setflag_at
);
memory
->
sfree
(
setflag_aat
);
memory
->
sfree
(
setflag_bb13t
);
memory
->
sfree
(
k1
);
memory
->
sfree
(
k2
);
memory
->
sfree
(
k3
);
memory
->
sfree
(
phi1
);
memory
->
sfree
(
phi2
);
memory
->
sfree
(
phi3
);
memory
->
sfree
(
mbt_f1
);
memory
->
sfree
(
mbt_f2
);
memory
->
sfree
(
mbt_f3
);
memory
->
sfree
(
mbt_r0
);
memory
->
sfree
(
ebt_f1_1
);
memory
->
sfree
(
ebt_f2_1
);
memory
->
sfree
(
ebt_f3_1
);
memory
->
sfree
(
ebt_r0_1
);
memory
->
sfree
(
ebt_f1_2
);
memory
->
sfree
(
ebt_f2_2
);
memory
->
sfree
(
ebt_f3_2
);
memory
->
sfree
(
ebt_r0_2
);
memory
->
sfree
(
at_f1_1
);
memory
->
sfree
(
at_f2_1
);
memory
->
sfree
(
at_f3_1
);
memory
->
sfree
(
at_theta0_1
);
memory
->
sfree
(
at_f1_2
);
memory
->
sfree
(
at_f2_2
);
memory
->
sfree
(
at_f3_2
);
memory
->
sfree
(
at_theta0_2
);
memory
->
sfree
(
aat_k
);
memory
->
sfree
(
aat_theta0_1
);
memory
->
sfree
(
aat_theta0_2
);
memory
->
sfree
(
bb13t_k
);
memory
->
sfree
(
bb13t_r10
);
memory
->
sfree
(
bb13t_r30
);
}
}
/* ---------------------------------------------------------------------- */
void
DihedralClass2
::
compute
(
int
eflag
,
int
vflag
)
{
int
i1
,
i2
,
i3
,
i4
,
i
,
j
,
k
,
n
,
type
;
double
vb1x
,
vb1y
,
vb1z
,
vb2x
,
vb2y
,
vb2z
,
vb3x
,
vb3y
,
vb3z
,
vb2xm
,
vb2ym
,
vb2zm
;
double
edihedral
;
double
r1mag2
,
r1
,
r2mag2
,
r2
,
r3mag2
,
r3
;
double
sb1
,
rb1
,
sb2
,
rb2
,
sb3
,
rb3
,
c0
,
r12c1
;
double
r12c2
,
costh12
,
costh13
,
costh23
,
sc1
,
sc2
,
s1
,
s2
,
c
;
double
cosphi
,
phi
,
sinphi
,
a11
,
a22
,
a33
,
a12
,
a13
,
a23
,
sx1
,
sx2
;
double
sx12
,
sy1
,
sy2
,
sy12
,
sz1
,
sz2
,
sz12
,
dphi1
,
dphi2
,
dphi3
;
double
de_dihedral
,
t1
,
t2
,
t3
,
t4
,
cos2phi
,
cos3phi
,
bt1
,
bt2
;
double
bt3
,
sumbte
,
db
,
sumbtf
,
at1
,
at2
,
at3
,
da
,
da1
,
da2
,
r1_0
;
double
r3_0
,
dr1
,
dr2
,
tk1
,
tk2
,
s12
,
sin2
;
double
dcosphidr
[
4
][
3
],
dphidr
[
4
][
3
],
dbonddr
[
3
][
4
][
3
],
dthetadr
[
2
][
4
][
3
];
double
fabcd
[
4
][
3
];
edihedral
=
0.0
;
if
(
eflag
||
vflag
)
ev_setup
(
eflag
,
vflag
);
else
evflag
=
0
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
int
**
dihedrallist
=
neighbor
->
dihedrallist
;
int
ndihedrallist
=
neighbor
->
ndihedrallist
;
int
nlocal
=
atom
->
nlocal
;
int
newton_bond
=
force
->
newton_bond
;
for
(
n
=
0
;
n
<
ndihedrallist
;
n
++
)
{
i1
=
dihedrallist
[
n
][
0
];
i2
=
dihedrallist
[
n
][
1
];
i3
=
dihedrallist
[
n
][
2
];
i4
=
dihedrallist
[
n
][
3
];
type
=
dihedrallist
[
n
][
4
];
// 1st bond
vb1x
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
vb1y
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
vb1z
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
vb1x
,
vb1y
,
vb1z
);
// 2nd bond
vb2x
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
vb2y
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
vb2z
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
vb2x
,
vb2y
,
vb2z
);
vb2xm
=
-
vb2x
;
vb2ym
=
-
vb2y
;
vb2zm
=
-
vb2z
;
domain
->
minimum_image
(
vb2xm
,
vb2ym
,
vb2zm
);
// 3rd bond
vb3x
=
x
[
i4
][
0
]
-
x
[
i3
][
0
];
vb3y
=
x
[
i4
][
1
]
-
x
[
i3
][
1
];
vb3z
=
x
[
i4
][
2
]
-
x
[
i3
][
2
];
domain
->
minimum_image
(
vb3x
,
vb3y
,
vb3z
);
// distances
r1mag2
=
vb1x
*
vb1x
+
vb1y
*
vb1y
+
vb1z
*
vb1z
;
r1
=
sqrt
(
r1mag2
);
r2mag2
=
vb2x
*
vb2x
+
vb2y
*
vb2y
+
vb2z
*
vb2z
;
r2
=
sqrt
(
r2mag2
);
r3mag2
=
vb3x
*
vb3x
+
vb3y
*
vb3y
+
vb3z
*
vb3z
;
r3
=
sqrt
(
r3mag2
);
sb1
=
1.0
/
r1mag2
;
rb1
=
1.0
/
r1
;
sb2
=
1.0
/
r2mag2
;
rb2
=
1.0
/
r2
;
sb3
=
1.0
/
r3mag2
;
rb3
=
1.0
/
r3
;
c0
=
(
vb1x
*
vb3x
+
vb1y
*
vb3y
+
vb1z
*
vb3z
)
*
rb1
*
rb3
;
// angles
r12c1
=
rb1
*
rb2
;
r12c2
=
rb2
*
rb3
;
costh12
=
(
vb1x
*
vb2x
+
vb1y
*
vb2y
+
vb1z
*
vb2z
)
*
r12c1
;
costh13
=
c0
;
costh23
=
(
vb2xm
*
vb3x
+
vb2ym
*
vb3y
+
vb2zm
*
vb3z
)
*
r12c2
;
// cos and sin of 2 angles and final c
sin2
=
MAX
(
1.0
-
costh12
*
costh12
,
0.0
);
sc1
=
sqrt
(
sin2
);
if
(
sc1
<
SMALL
)
sc1
=
SMALL
;
sc1
=
1.0
/
sc1
;
sin2
=
MAX
(
1.0
-
costh23
*
costh23
,
0.0
);
sc2
=
sqrt
(
sin2
);
if
(
sc2
<
SMALL
)
sc2
=
SMALL
;
sc2
=
1.0
/
sc2
;
s1
=
sc1
*
sc1
;
s2
=
sc2
*
sc2
;
s12
=
sc1
*
sc2
;
c
=
(
c0
+
costh12
*
costh23
)
*
s12
;
// error check
if
(
c
>
1.0
+
TOLERANCE
||
c
<
(
-
1.0
-
TOLERANCE
))
{
int
me
;
MPI_Comm_rank
(
world
,
&
me
);
if
(
screen
)
{
char
str
[
128
];
sprintf
(
str
,
"Dihedral problem: %d %d %d %d %d %d
\n
"
,
me
,
update
->
ntimestep
,
atom
->
tag
[
i1
],
atom
->
tag
[
i2
],
atom
->
tag
[
i3
],
atom
->
tag
[
i4
]);
error
->
warning
(
str
);
fprintf
(
screen
,
" 1st atom: %d %g %g %g
\n
"
,
me
,
x
[
i1
][
0
],
x
[
i1
][
1
],
x
[
i1
][
2
]);
fprintf
(
screen
,
" 2nd atom: %d %g %g %g
\n
"
,
me
,
x
[
i2
][
0
],
x
[
i2
][
1
],
x
[
i2
][
2
]);
fprintf
(
screen
,
" 3rd atom: %d %g %g %g
\n
"
,
me
,
x
[
i3
][
0
],
x
[
i3
][
1
],
x
[
i3
][
2
]);
fprintf
(
screen
,
" 4th atom: %d %g %g %g
\n
"
,
me
,
x
[
i4
][
0
],
x
[
i4
][
1
],
x
[
i4
][
2
]);
}
}
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
cosphi
=
c
;
phi
=
acos
(
c
);
sinphi
=
sqrt
(
1.0
-
c
*
c
);
sinphi
=
MAX
(
sinphi
,
SMALL
);
a11
=
-
c
*
sb1
*
s1
;
a22
=
sb2
*
(
2.0
*
costh13
*
s12
-
c
*
(
s1
+
s2
));
a33
=
-
c
*
sb3
*
s2
;
a12
=
r12c1
*
(
costh12
*
c
*
s1
+
costh23
*
s12
);
a13
=
rb1
*
rb3
*
s12
;
a23
=
r12c2
*
(
-
costh23
*
c
*
s2
-
costh12
*
s12
);
sx1
=
a11
*
vb1x
+
a12
*
vb2x
+
a13
*
vb3x
;
sx2
=
a12
*
vb1x
+
a22
*
vb2x
+
a23
*
vb3x
;
sx12
=
a13
*
vb1x
+
a23
*
vb2x
+
a33
*
vb3x
;
sy1
=
a11
*
vb1y
+
a12
*
vb2y
+
a13
*
vb3y
;
sy2
=
a12
*
vb1y
+
a22
*
vb2y
+
a23
*
vb3y
;
sy12
=
a13
*
vb1y
+
a23
*
vb2y
+
a33
*
vb3y
;
sz1
=
a11
*
vb1z
+
a12
*
vb2z
+
a13
*
vb3z
;
sz2
=
a12
*
vb1z
+
a22
*
vb2z
+
a23
*
vb3z
;
sz12
=
a13
*
vb1z
+
a23
*
vb2z
+
a33
*
vb3z
;
// set up d(cos(phi))/d(r) and dphi/dr arrays
dcosphidr
[
0
][
0
]
=
-
sx1
;
dcosphidr
[
0
][
1
]
=
-
sy1
;
dcosphidr
[
0
][
2
]
=
-
sz1
;
dcosphidr
[
1
][
0
]
=
sx2
+
sx1
;
dcosphidr
[
1
][
1
]
=
sy2
+
sy1
;
dcosphidr
[
1
][
2
]
=
sz2
+
sz1
;
dcosphidr
[
2
][
0
]
=
sx12
-
sx2
;
dcosphidr
[
2
][
1
]
=
sy12
-
sy2
;
dcosphidr
[
2
][
2
]
=
sz12
-
sz2
;
dcosphidr
[
3
][
0
]
=
-
sx12
;
dcosphidr
[
3
][
1
]
=
-
sy12
;
dcosphidr
[
3
][
2
]
=
-
sz12
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
dphidr
[
i
][
j
]
=
-
dcosphidr
[
i
][
j
]
/
sinphi
;
// energy
dphi1
=
phi
-
phi1
[
type
];
dphi2
=
2.0
*
phi
-
phi2
[
type
];
dphi3
=
3.0
*
phi
-
phi3
[
type
];
if
(
eflag
)
edihedral
=
k1
[
type
]
*
(
1.0
-
cos
(
dphi1
))
+
k2
[
type
]
*
(
1.0
-
cos
(
dphi2
))
+
k3
[
type
]
*
(
1.0
-
cos
(
dphi3
));
de_dihedral
=
k1
[
type
]
*
sin
(
dphi1
)
+
2.0
*
k2
[
type
]
*
sin
(
dphi2
)
+
3.0
*
k3
[
type
]
*
sin
(
dphi3
);
// torsion forces on all 4 atoms
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
=
de_dihedral
*
dphidr
[
i
][
j
];
// set up d(bond)/d(r) array
// dbonddr(i,j,k) = bond i, atom j, coordinate k
for
(
i
=
0
;
i
<
3
;
i
++
)
for
(
j
=
0
;
j
<
4
;
j
++
)
for
(
k
=
0
;
k
<
3
;
k
++
)
dbonddr
[
i
][
j
][
k
]
=
0.0
;
// bond1
dbonddr
[
0
][
0
][
0
]
=
vb1x
/
r1
;
dbonddr
[
0
][
0
][
1
]
=
vb1y
/
r1
;
dbonddr
[
0
][
0
][
2
]
=
vb1z
/
r1
;
dbonddr
[
0
][
1
][
0
]
=
-
vb1x
/
r1
;
dbonddr
[
0
][
1
][
1
]
=
-
vb1y
/
r1
;
dbonddr
[
0
][
1
][
2
]
=
-
vb1z
/
r1
;
// bond2
dbonddr
[
1
][
1
][
0
]
=
vb2x
/
r2
;
dbonddr
[
1
][
1
][
1
]
=
vb2y
/
r2
;
dbonddr
[
1
][
1
][
2
]
=
vb2z
/
r2
;
dbonddr
[
1
][
2
][
0
]
=
-
vb2x
/
r2
;
dbonddr
[
1
][
2
][
1
]
=
-
vb2y
/
r2
;
dbonddr
[
1
][
2
][
2
]
=
-
vb2z
/
r2
;
// bond3
dbonddr
[
2
][
2
][
0
]
=
vb3x
/
r3
;
dbonddr
[
2
][
2
][
1
]
=
vb3y
/
r3
;
dbonddr
[
2
][
2
][
2
]
=
vb3z
/
r3
;
dbonddr
[
2
][
3
][
0
]
=
-
vb3x
/
r3
;
dbonddr
[
2
][
3
][
1
]
=
-
vb3y
/
r3
;
dbonddr
[
2
][
3
][
2
]
=
-
vb3z
/
r3
;
// set up d(theta)/d(r) array
// dthetadr(i,j,k) = angle i, atom j, coordinate k
for
(
i
=
0
;
i
<
2
;
i
++
)
for
(
j
=
0
;
j
<
4
;
j
++
)
for
(
k
=
0
;
k
<
3
;
k
++
)
dthetadr
[
i
][
j
][
k
]
=
0.0
;
t1
=
costh12
/
r1mag2
;
t2
=
costh23
/
r2mag2
;
t3
=
costh12
/
r2mag2
;
t4
=
costh23
/
r3mag2
;
// angle12
dthetadr
[
0
][
0
][
0
]
=
sc1
*
((
t1
*
vb1x
)
-
(
vb2x
*
r12c1
));
dthetadr
[
0
][
0
][
1
]
=
sc1
*
((
t1
*
vb1y
)
-
(
vb2y
*
r12c1
));
dthetadr
[
0
][
0
][
2
]
=
sc1
*
((
t1
*
vb1z
)
-
(
vb2z
*
r12c1
));
dthetadr
[
0
][
1
][
0
]
=
sc1
*
((
-
t1
*
vb1x
)
+
(
vb2x
*
r12c1
)
+
(
-
t3
*
vb2x
)
+
(
vb1x
*
r12c1
));
dthetadr
[
0
][
1
][
1
]
=
sc1
*
((
-
t1
*
vb1y
)
+
(
vb2y
*
r12c1
)
+
(
-
t3
*
vb2y
)
+
(
vb1y
*
r12c1
));
dthetadr
[
0
][
1
][
2
]
=
sc1
*
((
-
t1
*
vb1z
)
+
(
vb2z
*
r12c1
)
+
(
-
t3
*
vb2z
)
+
(
vb1z
*
r12c1
));
dthetadr
[
0
][
2
][
0
]
=
sc1
*
((
t3
*
vb2x
)
-
(
vb1x
*
r12c1
));
dthetadr
[
0
][
2
][
1
]
=
sc1
*
((
t3
*
vb2y
)
-
(
vb1y
*
r12c1
));
dthetadr
[
0
][
2
][
2
]
=
sc1
*
((
t3
*
vb2z
)
-
(
vb1z
*
r12c1
));
// angle23
dthetadr
[
1
][
1
][
0
]
=
sc2
*
((
t2
*
vb2x
)
+
(
vb3x
*
r12c2
));
dthetadr
[
1
][
1
][
1
]
=
sc2
*
((
t2
*
vb2y
)
+
(
vb3y
*
r12c2
));
dthetadr
[
1
][
1
][
2
]
=
sc2
*
((
t2
*
vb2z
)
+
(
vb3z
*
r12c2
));
dthetadr
[
1
][
2
][
0
]
=
sc2
*
((
-
t2
*
vb2x
)
-
(
vb3x
*
r12c2
)
+
(
t4
*
vb3x
)
+
(
vb2x
*
r12c2
));
dthetadr
[
1
][
2
][
1
]
=
sc2
*
((
-
t2
*
vb2y
)
-
(
vb3y
*
r12c2
)
+
(
t4
*
vb3y
)
+
(
vb2y
*
r12c2
));
dthetadr
[
1
][
2
][
2
]
=
sc2
*
((
-
t2
*
vb2z
)
-
(
vb3z
*
r12c2
)
+
(
t4
*
vb3z
)
+
(
vb2z
*
r12c2
));
dthetadr
[
1
][
3
][
0
]
=
-
sc2
*
((
t4
*
vb3x
)
+
(
vb2x
*
r12c2
));
dthetadr
[
1
][
3
][
1
]
=
-
sc2
*
((
t4
*
vb3y
)
+
(
vb2y
*
r12c2
));
dthetadr
[
1
][
3
][
2
]
=
-
sc2
*
((
t4
*
vb3z
)
+
(
vb2z
*
r12c2
));
// mid-bond/torsion coupling
// energy on bond2 (middle bond)
cos2phi
=
cos
(
2.0
*
phi
);
cos3phi
=
cos
(
3.0
*
phi
);
bt1
=
mbt_f1
[
type
]
*
cosphi
;
bt2
=
mbt_f2
[
type
]
*
cos2phi
;
bt3
=
mbt_f3
[
type
]
*
cos3phi
;
sumbte
=
bt1
+
bt2
+
bt3
;
db
=
r2
-
mbt_r0
[
type
];
if
(
eflag
)
edihedral
+=
db
*
sumbte
;
// force on bond2
bt1
=
-
mbt_f1
[
type
]
*
sinphi
;
bt2
=
-
2.0
*
mbt_f2
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
-
3.0
*
mbt_f3
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
+=
db
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dbonddr
[
1
][
i
][
j
];
// end-bond/torsion coupling
// energy on bond1 (first bond)
bt1
=
ebt_f1_1
[
type
]
*
cosphi
;
bt2
=
ebt_f2_1
[
type
]
*
cos2phi
;
bt3
=
ebt_f3_1
[
type
]
*
cos3phi
;
sumbte
=
bt1
+
bt2
+
bt3
;
db
=
r1
-
ebt_r0_1
[
type
];
if
(
eflag
)
edihedral
+=
db
*
(
bt1
+
bt2
+
bt3
);
// force on bond1
bt1
=
ebt_f1_1
[
type
]
*
sinphi
;
bt2
=
2.0
*
ebt_f2_1
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
3.0
*
ebt_f3_1
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
-=
db
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dbonddr
[
0
][
i
][
j
];
// end-bond/torsion coupling
// energy on bond3 (last bond)
bt1
=
ebt_f1_2
[
type
]
*
cosphi
;
bt2
=
ebt_f2_2
[
type
]
*
cos2phi
;
bt3
=
ebt_f3_2
[
type
]
*
cos3phi
;
sumbte
=
bt1
+
bt2
+
bt3
;
db
=
r3
-
ebt_r0_2
[
type
];
if
(
eflag
)
edihedral
+=
db
*
(
bt1
+
bt2
+
bt3
);
// force on bond3
bt1
=
-
ebt_f1_2
[
type
]
*
sinphi
;
bt2
=
-
2.0
*
ebt_f2_2
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
-
3.0
*
ebt_f3_2
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
+=
db
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dbonddr
[
2
][
i
][
j
];
// angle/torsion coupling
// energy on angle1
at1
=
at_f1_1
[
type
]
*
cosphi
;
at2
=
at_f2_1
[
type
]
*
cos2phi
;
at3
=
at_f3_1
[
type
]
*
cos3phi
;
sumbte
=
at1
+
at2
+
at3
;
da
=
acos
(
costh12
)
-
at_theta0_1
[
type
];
if
(
eflag
)
edihedral
+=
da
*
(
at1
+
at2
+
at3
);
// force on angle1
bt1
=
at_f1_1
[
type
]
*
sinphi
;
bt2
=
2.0
*
at_f2_1
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
3.0
*
at_f3_1
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
-=
da
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dthetadr
[
0
][
i
][
j
];
// energy on angle2
at1
=
at_f1_2
[
type
]
*
cosphi
;
at2
=
at_f2_2
[
type
]
*
cos2phi
;
at3
=
at_f3_2
[
type
]
*
cos3phi
;
sumbte
=
at1
+
at2
+
at3
;
da
=
acos
(
costh23
)
-
at_theta0_2
[
type
];
if
(
eflag
)
edihedral
+=
da
*
(
at1
+
at2
+
at3
);
// force on angle2
bt1
=
-
at_f1_2
[
type
]
*
sinphi
;
bt2
=
-
2.0
*
at_f2_2
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
-
3.0
*
at_f3_2
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
+=
da
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dthetadr
[
1
][
i
][
j
];
// angle/angle/torsion coupling
da1
=
acos
(
costh12
)
-
aat_theta0_1
[
type
];
da2
=
acos
(
costh23
)
-
aat_theta0_2
[
type
];
if
(
eflag
)
edihedral
+=
aat_k
[
type
]
*
da1
*
da2
*
cosphi
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
-=
aat_k
[
type
]
*
(
cosphi
*
(
da2
*
dthetadr
[
0
][
i
][
j
]
-
da1
*
dthetadr
[
1
][
i
][
j
])
+
sinphi
*
da1
*
da2
*
dphidr
[
i
][
j
]);
// bond1/bond3 coupling
if
(
fabs
(
bb13t_k
[
type
])
>
SMALL
)
{
r1_0
=
bb13t_r10
[
type
];
r3_0
=
bb13t_r30
[
type
];
dr1
=
r1
-
r1_0
;
dr2
=
r3
-
r3_0
;
tk1
=
-
bb13t_k
[
type
]
*
dr1
/
r3
;
tk2
=
-
bb13t_k
[
type
]
*
dr2
/
r1
;
if
(
eflag
)
edihedral
+=
bb13t_k
[
type
]
*
dr1
*
dr2
;
fabcd
[
0
][
0
]
+=
tk2
*
vb1x
;
fabcd
[
0
][
1
]
+=
tk2
*
vb1y
;
fabcd
[
0
][
2
]
+=
tk2
*
vb1z
;
fabcd
[
1
][
0
]
-=
tk2
*
vb1x
;
fabcd
[
1
][
1
]
-=
tk2
*
vb1y
;
fabcd
[
1
][
2
]
-=
tk2
*
vb1z
;
fabcd
[
2
][
0
]
-=
tk1
*
vb3x
;
fabcd
[
2
][
1
]
-=
tk1
*
vb3y
;
fabcd
[
2
][
2
]
-=
tk1
*
vb3z
;
fabcd
[
3
][
0
]
+=
tk1
*
vb3x
;
fabcd
[
3
][
1
]
+=
tk1
*
vb3y
;
fabcd
[
3
][
2
]
+=
tk1
*
vb3z
;
}
// apply force to each of 4 atoms
if
(
newton_bond
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
fabcd
[
0
][
0
];
f
[
i1
][
1
]
+=
fabcd
[
0
][
1
];
f
[
i1
][
2
]
+=
fabcd
[
0
][
2
];
}
if
(
newton_bond
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
+=
fabcd
[
1
][
0
];
f
[
i2
][
1
]
+=
fabcd
[
1
][
1
];
f
[
i2
][
2
]
+=
fabcd
[
1
][
2
];
}
if
(
newton_bond
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
fabcd
[
2
][
0
];
f
[
i3
][
1
]
+=
fabcd
[
2
][
1
];
f
[
i3
][
2
]
+=
fabcd
[
2
][
2
];
}
if
(
newton_bond
||
i4
<
nlocal
)
{
f
[
i4
][
0
]
+=
fabcd
[
3
][
0
];
f
[
i4
][
1
]
+=
fabcd
[
3
][
1
];
f
[
i4
][
2
]
+=
fabcd
[
3
][
2
];
}
if
(
evflag
)
ev_tally
(
i1
,
i2
,
i3
,
i4
,
nlocal
,
newton_bond
,
edihedral
,
fabcd
[
0
],
fabcd
[
2
],
fabcd
[
3
],
vb1x
,
vb1y
,
vb1z
,
vb2x
,
vb2y
,
vb2z
,
vb3x
,
vb3y
,
vb3z
);
}
}
/* ---------------------------------------------------------------------- */
void
DihedralClass2
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ndihedraltypes
;
k1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:k1"
);
k2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:k2"
);
k3
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:k3"
);
phi1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:phi1"
);
phi2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:phi2"
);
phi3
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:phi3"
);
mbt_f1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:mbt_f1"
);
mbt_f2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:mbt_f2"
);
mbt_f3
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:mbt_f3"
);
mbt_r0
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:mbt_r0"
);
ebt_f1_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_f1_1"
);
ebt_f2_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_f2_1"
);
ebt_f3_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_f3_1"
);
ebt_r0_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_r0_1"
);
ebt_f1_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_f1_2"
);
ebt_f2_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_f2_2"
);
ebt_f3_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_f3_2"
);
ebt_r0_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:ebt_r0_2"
);
at_f1_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_f1_1"
);
at_f2_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_f2_1"
);
at_f3_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_f3_1"
);
at_theta0_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_theta0_1"
);
at_f1_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_f1_2"
);
at_f2_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_f2_2"
);
at_f3_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_f3_2"
);
at_theta0_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:at_theta0_2"
);
aat_k
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:aat_k"
);
aat_theta0_1
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:aat_theta0_1"
);
aat_theta0_2
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:aat_theta0_2"
);
bb13t_k
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:bb13t_k"
);
bb13t_r10
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:bb13t_r10"
);
bb13t_r30
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:bb13t_r30"
);
setflag
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag"
);
setflag_d
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag_d"
);
setflag_mbt
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag_mbt"
);
setflag_ebt
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag_ebt"
);
setflag_at
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag_at"
);
setflag_aat
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag_aat"
);
setflag_bb13t
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag_bb13t"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
setflag
[
i
]
=
setflag_d
[
i
]
=
setflag_mbt
[
i
]
=
setflag_ebt
[
i
]
=
setflag_at
[
i
]
=
setflag_aat
[
i
]
=
setflag_bb13t
[
i
]
=
0
;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
which = 0 -> Dihedral coeffs
which = 1 -> MiddleBondTorsion coeffs
which = 2 -> EndBondTorsion coeffs
which = 3 -> AngleTorsion coeffs
which = 4 -> AngleAngleTorsion coeffs
which = 5 -> BondBond13Torsion coeffs
------------------------------------------------------------------------- */
void
DihedralClass2
::
coeff
(
int
which
,
int
narg
,
char
**
arg
)
{
if
(
which
<
0
||
which
>
5
)
error
->
all
(
"Invalid coeffs for this dihedral style"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
;
force
->
bounds
(
arg
[
0
],
atom
->
ndihedraltypes
,
ilo
,
ihi
);
int
count
=
0
;
if
(
which
==
0
)
{
if
(
narg
!=
7
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
double
k1_one
=
atof
(
arg
[
1
]);
double
phi1_one
=
atof
(
arg
[
2
]);
double
k2_one
=
atof
(
arg
[
3
]);
double
phi2_one
=
atof
(
arg
[
4
]);
double
k3_one
=
atof
(
arg
[
5
]);
double
phi3_one
=
atof
(
arg
[
6
]);
// convert phi's from degrees to radians
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
k1
[
i
]
=
k1_one
;
phi1
[
i
]
=
phi1_one
/
180.0
*
PI
;
k2
[
i
]
=
k2_one
;
phi2
[
i
]
=
phi2_one
/
180.0
*
PI
;
k3
[
i
]
=
k3_one
;
phi3
[
i
]
=
phi3_one
/
180.0
*
PI
;
setflag_d
[
i
]
=
1
;
count
++
;
}
}
if
(
which
==
1
)
{
if
(
narg
!=
5
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
double
f1_one
=
atof
(
arg
[
1
]);
double
f2_one
=
atof
(
arg
[
2
]);
double
f3_one
=
atof
(
arg
[
3
]);
double
r0_one
=
atof
(
arg
[
4
]);
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
mbt_f1
[
i
]
=
f1_one
;
mbt_f2
[
i
]
=
f2_one
;
mbt_f3
[
i
]
=
f3_one
;
mbt_r0
[
i
]
=
r0_one
;
setflag_mbt
[
i
]
=
1
;
count
++
;
}
}
if
(
which
==
2
)
{
if
(
narg
!=
9
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
double
f1_1_one
=
atof
(
arg
[
1
]);
double
f2_1_one
=
atof
(
arg
[
2
]);
double
f3_1_one
=
atof
(
arg
[
3
]);
double
f1_2_one
=
atof
(
arg
[
4
]);
double
f2_2_one
=
atof
(
arg
[
5
]);
double
f3_2_one
=
atof
(
arg
[
6
]);
double
r0_1_one
=
atof
(
arg
[
7
]);
double
r0_2_one
=
atof
(
arg
[
8
]);
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
ebt_f1_1
[
i
]
=
f1_1_one
;
ebt_f2_1
[
i
]
=
f2_1_one
;
ebt_f3_1
[
i
]
=
f3_1_one
;
ebt_f1_2
[
i
]
=
f1_2_one
;
ebt_f2_2
[
i
]
=
f2_2_one
;
ebt_f3_2
[
i
]
=
f3_2_one
;
ebt_r0_1
[
i
]
=
r0_1_one
;
ebt_r0_2
[
i
]
=
r0_2_one
;
setflag_ebt
[
i
]
=
1
;
count
++
;
}
}
if
(
which
==
3
)
{
if
(
narg
!=
9
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
double
f1_1_one
=
atof
(
arg
[
1
]);
double
f2_1_one
=
atof
(
arg
[
2
]);
double
f3_1_one
=
atof
(
arg
[
3
]);
double
f1_2_one
=
atof
(
arg
[
4
]);
double
f2_2_one
=
atof
(
arg
[
5
]);
double
f3_2_one
=
atof
(
arg
[
6
]);
double
theta0_1_one
=
atof
(
arg
[
7
]);
double
theta0_2_one
=
atof
(
arg
[
8
]);
// convert theta0's from degrees to radians
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
at_f1_1
[
i
]
=
f1_1_one
;
at_f2_1
[
i
]
=
f2_1_one
;
at_f3_1
[
i
]
=
f3_1_one
;
at_f1_2
[
i
]
=
f1_2_one
;
at_f2_2
[
i
]
=
f2_2_one
;
at_f3_2
[
i
]
=
f3_2_one
;
at_theta0_1
[
i
]
=
theta0_1_one
/
180.0
*
PI
;
at_theta0_2
[
i
]
=
theta0_2_one
/
180.0
*
PI
;
setflag_at
[
i
]
=
1
;
count
++
;
}
}
if
(
which
==
4
)
{
if
(
narg
!=
4
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
double
k_one
=
atof
(
arg
[
1
]);
double
theta0_1_one
=
atof
(
arg
[
2
]);
double
theta0_2_one
=
atof
(
arg
[
3
]);
// convert theta0's from degrees to radians
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
aat_k
[
i
]
=
k_one
;
aat_theta0_1
[
i
]
=
theta0_1_one
/
180.0
*
PI
;
aat_theta0_2
[
i
]
=
theta0_2_one
/
180.0
*
PI
;
setflag_aat
[
i
]
=
1
;
count
++
;
}
}
if
(
which
==
5
)
{
if
(
narg
!=
4
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
double
k_one
=
atof
(
arg
[
1
]);
double
r10_one
=
atof
(
arg
[
2
]);
double
r30_one
=
atof
(
arg
[
3
]);
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
bb13t_k
[
i
]
=
k_one
;
bb13t_r10
[
i
]
=
r10_one
;
bb13t_r30
[
i
]
=
r30_one
;
setflag_bb13t
[
i
]
=
1
;
count
++
;
}
}
if
(
count
==
0
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
if
(
setflag_d
[
i
]
==
1
&&
setflag_mbt
[
i
]
==
1
&&
setflag_ebt
[
i
]
==
1
&&
setflag_at
[
i
]
==
1
&&
setflag_aat
[
i
]
==
1
&&
setflag_bb13t
[
i
]
==
1
)
setflag
[
i
]
=
1
;
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void
DihedralClass2
::
write_restart
(
FILE
*
fp
)
{
fwrite
(
&
k1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
k2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
k3
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
phi1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
phi2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
phi3
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
mbt_f1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
mbt_f2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
mbt_f3
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
mbt_r0
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_f1_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_f2_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_f3_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_r0_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_f1_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_f2_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_f3_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
ebt_r0_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_f1_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_f2_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_f3_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_theta0_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_f1_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_f2_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_f3_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
at_theta0_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
aat_k
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
aat_theta0_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
aat_theta0_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
bb13t_k
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
bb13t_r10
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
bb13t_r30
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void
DihedralClass2
::
read_restart
(
FILE
*
fp
)
{
allocate
();
if
(
comm
->
me
==
0
)
{
fread
(
&
k1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
k2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
k3
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
phi1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
phi2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
phi3
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
mbt_f1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
mbt_f2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
mbt_f3
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
mbt_r0
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_f1_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_f2_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_f3_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_r0_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_f1_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_f2_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_f3_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
ebt_r0_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_f1_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_f2_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_f3_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_theta0_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_f1_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_f2_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_f3_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
at_theta0_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
aat_k
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
aat_theta0_1
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
aat_theta0_2
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
bb13t_k
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
bb13t_r10
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
bb13t_r30
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
}
MPI_Bcast
(
&
k1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
k2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
k3
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
phi1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
phi2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
phi3
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
mbt_f1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
mbt_f2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
mbt_f3
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
mbt_r0
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_f1_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_f2_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_f3_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_r0_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_f1_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_f2_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_f3_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
ebt_r0_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_f1_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_f2_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_f3_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_theta0_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_f1_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_f2_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_f3_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
at_theta0_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
aat_k
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
aat_theta0_1
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
aat_theta0_2
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
bb13t_k
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
bb13t_r10
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
bb13t_r30
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
setflag
[
i
]
=
1
;
}
Event Timeline
Log In to Comment