Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92860564
tutorial_example.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 24, 07:27
Size
2 KB
Mime Type
text/x-python
Expires
Tue, Nov 26, 07:27 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22527830
Attached To
rMUSPECTRE µSpectre
tutorial_example.py
View Options
#!/usr/bin/env python3
import
numpy
as
np
import
muSpectre
as
msp
import
matplotlib.pyplot
as
plt
## currently, muSpectre is restricted to odd-numbered resolutions for
## reasons explained in T.W.J. de Geus, J. Vondřejc, J. Zeman,
## R.H.J. Peerlings, M.G.D. Geers, Finite strain FFT-based non-linear
## solvers made simple, Computer Methods in Applied Mechanics and
## Engineering, Volume 318, 2017
## https://doi.org/10.1016/j.cma.2016.12.032
resolution
=
[
51
,
51
]
center
=
np
.
array
([
r
//
2
for
r
in
resolution
])
incl
=
resolution
[
0
]
//
5
## Domain dimensions
lengths
=
[
7.
,
5.
]
## formulation (small_strain or finite_strain)
formulation
=
msp
.
Formulation
.
small_strain
## build a computational domain
rve
=
msp
.
Cell
(
resolution
,
lengths
,
formulation
)
## define the material properties of the matrix and inclusion
hard
=
msp
.
material
.
MaterialLinearElastic1_2d
.
make
(
rve
,
"hard"
,
10e9
,
.
33
)
soft
=
msp
.
material
.
MaterialLinearElastic1_2d
.
make
(
rve
,
"soft"
,
70e9
,
.
33
)
## assign each pixel to exactly one material
for
i
,
pixel
in
enumerate
(
rve
):
if
np
.
linalg
.
norm
(
center
-
np
.
array
(
pixel
),
2
)
<
incl
:
hard
.
add_pixel
(
pixel
)
else
:
soft
.
add_pixel
(
pixel
)
## define the convergence tolerance for the Newton-Raphson increment
tol
=
1e-5
## tolerance for the solver of the linear cell
cg_tol
=
1e-8
## Macroscopic strain
Del0
=
np
.
array
([[
.
0
,
.
0
],
[
0
,
.
03
]])
Del0
=
.
5
*
(
Del0
+
Del0
.
T
)
maxiter
=
50
## for linear cell solver
## Choose a solver for the linear cells. Currently avaliable:
## SolverCG, SolverCGEigen, SolverBiCGSTABEigen, SolverGMRESEigen,
## SolverDGMRESEigen, SolverMINRESEigen.
## See Reference for explanations
solver
=
msp
.
solvers
.
SolverCGEigen
(
rve
,
cg_tol
,
maxiter
,
verbose
=
True
)
## Verbosity levels:
## 0: silent,
## 1: info about Newton-Raphson loop,
verbose
=
1
## Choose a solution strategy. Currently available:
## de_geus: is discribed in de Geus et al. see Ref above
## newton_cg: classical Newton-Conjugate Gradient solver. Recommended
result
=
msp
.
solvers
.
newton_cg
(
rve
,
Del0
,
solver
,
tol
,
verbose
)
print
(
result
)
## visualise e.g., stress in y-direction
stress
=
result
.
stress
## stress is stored in a flatten stress tensor per pixel, i.e., a
## dim^2 × prod(resolution_i) array, so it needs to be reshaped
stress
=
stress
.
T
.
reshape
(
*
resolution
,
2
,
2
)
plt
.
pcolormesh
(
stress
[:,
:,
1
,
1
])
plt
.
colorbar
()
plt
.
show
()
Event Timeline
Log In to Comment