Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93052699
cosmoratio.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 25, 20:30
Size
7 KB
Mime Type
text/x-c
Expires
Wed, Nov 27, 20:30 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22557831
Attached To
R1448 Lenstool-HPC
cosmoratio.c
View Options
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<structure.h>
#include "lt.h"
#include "gsl/gsl_integration.h"
#include "errors.h"
/****************************************************************/
/* nom: cosmoratio */
/* auteur: Jean-Paul Kneib */
/* date: 10/02/92 */
/* place: Toulouse */
/****************************************************************/
static
double
gg
(
double
z
);
static
double
sk
(
double
x
,
double
k
);
static
double
chi1
(
double
z
);
static
double
chi2
(
double
z1
,
double
z2
);
static
double
chiz_gsl
(
double
z
,
void
*
param
);
static
double
integral_chiz_ab
(
double
a
,
double
b
);
/**************************************************************/
double
distcosmo1
(
double
z
)
/* Return the angular distance DA(observator(z=0),object(z)) (no unit)
* Multiply discosmo1(z) by c/H0 to get the true value in Mpc.
* distcosmo1(z) * c/H0 = DA(0,z) = 1/(1+z) * Sk( integral( 0,z,c*dz/H(z) ) )
*
* Global variables used :
* - C
*/
{
const
extern
struct
g_cosmo
C
;
double
g
;
if
(
C
.
omegaX
==
0.
)
{
g
=
gg
(
z
);
// Reformulation of the Mattig relation of OL = OK = 0 (De Sitter)
return
(
2.
*
((
1.
-
C
.
omegaM
-
g
)
*
(
1.
-
g
))
/
C
.
omegaM
/
C
.
omegaM
/
(
1.
+
z
)
/
(
1.
+
z
));
}
else
{
if
(
C
.
kcourb
!=
0.
)
return
(
sk
(
chi1
(
z
)
*
sqrt
(
fabs
(
C
.
kcourb
)),
C
.
kcourb
)
/
(
1
+
z
)
/
sqrt
(
fabs
(
C
.
kcourb
)));
else
return
(
chi1
(
z
)
/
(
1
+
z
));
}
}
/**************************************************************/
/* Return the angular distance DA(object(z1),object(z2)) divided by c/H0
* distcosmo2(z1,z2) * c/H0 = DA(z1,z2) = 1/(1+z2) * Sk( integral( z1,z2,c*dz/H(z) ) )
*
* Global variables used :
* - C
* - in gg() : C
* - in chi2() : C
*/
double
distcosmo2
(
double
z1
,
double
z2
)
{
const
extern
struct
g_cosmo
C
;
double
g1
,
g2
;
if
(
z1
>=
z2
)
return
0.
;
if
(
C
.
omegaX
==
0.
)
{
g1
=
gg
(
z1
);
g2
=
gg
(
z2
);
// Mattig relation for a De Sitter Universe
return
(
2.
*
((
1.
-
C
.
omegaM
-
g1
*
g2
)
*
(
g1
-
g2
))
/
C
.
omegaM
/
C
.
omegaM
/
(
1.
+
z1
)
/
(
1.
+
z2
)
/
(
1.
+
z2
));
}
else
{
if
(
C
.
kcourb
!=
0.
)
return
(
sk
(
chi2
(
z1
,
z2
)
*
sqrt
(
fabs
(
C
.
kcourb
)),
C
.
kcourb
)
/
(
1
+
z2
)
/
sqrt
(
fabs
(
C
.
kcourb
)));
else
return
(
chi2
(
z1
,
z2
)
/
(
1
+
z2
));
}
}
/****************************************************************/
/* Return the lens efficacity E=DA(LS) / DA(OS)
*
* If zl > zs, return 0.
*
* Global variables used :
* - in distcosmo1() : C
* - in distcosmo2() : C
*/
double
dratio
(
double
zl
,
double
zs
)
{
if
(
zl
>=
zs
)
return
(
0.
);
else
return
(
distcosmo2
(
zl
,
zs
)
/
distcosmo1
(
zs
));
}
/* Same as dratio() but for arclet structures
*/
void
dratio_gal
(
struct
galaxie
*
arclet
,
double
zl
)
{
if
(
zl
<
arclet
->
z
)
arclet
->
dl0s
=
distcosmo2
(
zl
,
arclet
->
z
);
else
arclet
->
dl0s
=
0.
;
arclet
->
dos
=
distcosmo1
(
arclet
->
z
);
arclet
->
dr
=
arclet
->
dl0s
/
arclet
->
dos
;
}
/**************************************************************
* Return the luminosity distance DL(0,z) = (1+z)^2 * DA(0,z)
*/
double
dlumcosmo1
(
double
z
)
{
return
(
distcosmo1
(
z
)
*
(
1.
+
z
)
*
(
1.
+
z
));
}
/**************************************************************/
double
distprime1
(
double
z
)
{
const
extern
struct
g_cosmo
C
;
double
g
;
if
(
C
.
omegaX
==
0.
)
{
g
=
1.
/
(
1.
+
z
);
return
(
g
*
(
g
/
gg
(
z
)
-
distcosmo1
(
z
)
*
2.
*
g
));
}
else
{
return
((
distcosmo1
(
z
+
0.1
)
-
distcosmo1
(
z
))
/
0.1
);
}
}
/**************************************************************
* Global variables used :
* - in gg() : C
* - in chi2() : C
*/
double
distprime2
(
double
z1
,
double
z2
)
{
const
extern
struct
g_cosmo
C
;
double
g2
;
//g1
if
(
C
.
omegaX
==
0.
)
{
g2
=
1.
/
(
1.
+
z2
);
return
(
g2
*
(
g2
/
gg
(
z2
)
-
distcosmo2
(
z1
,
z2
)
*
2.
*
g2
));
}
else
{
return
((
distcosmo2
(
z1
,
z2
+
0.1
)
-
distcosmo2
(
z1
,
z2
))
/
0.1
);
}
}
/**************************************************************/
double
dratioprime
(
double
zl
,
double
zs
)
{
double
ds
;
ds
=
distcosmo1
(
zs
);
return
(
(
distprime2
(
zl
,
zs
)
-
distcosmo2
(
zl
,
zs
)
*
distprime1
(
zs
)
/
ds
)
/
ds
);
}
/**************************************************************/
/* Global variables used :
* - in chiz() : C
* */
static
double
gg
(
double
z
)
{
const
extern
struct
g_cosmo
C
;
return
(
sqrt
(
1.
+
C
.
omegaM
*
z
));
}
/**************************************************************
* Global variables used :
* - none
*/
static
double
sk
(
double
x
,
double
k
)
{
if
(
k
>
0
)
return
(
sin
(
x
));
else
if
(
k
<
0
)
return
(
sinh
(
x
));
else
return
(
x
);
}
/**************************************************************
* Return 1 / H(z) multiplied by H0
* chiz(z) / H0 = 1 / H(z) = 1/H0/(1+z)/sqrt( sum(i, Omega_i*(1+z)^(3*(w_i + 1) ) )
* with w_M = 0 and w_k = -1/3
*
* Global variables used :
* - C
* */
double
chiz
(
double
z
)
{
const
extern
struct
g_cosmo
C
;
double
x
;
double
yy
,
yyy
,
y4
;
double
r0
,
e1
,
e2
,
frac
;
x
=
1
+
z
;
switch
(
C
.
model
)
//TV CPL Model
{
case
(
1
)
:
x
=
-
x
*
x
*
C
.
kcourb
+
x
*
x
*
x
*
C
.
omegaM
+
C
.
omegaX
*
pow
(
x
,
3
*
(
1
+
C
.
wX
+
C
.
wa
))
*
exp
(
-
3
*
C
.
wa
*
z
/
x
);
break
;
case
(
2
)
:
//TV Cardassian (wx is q, wa is n)
yy
=
pow
(
(
1.
+
C
.
kcourb
)
/
C
.
omegaM
,
C
.
wX
);
yyy
=
(
yy
-
1.
)
*
pow
(
x
,
3.
*
C
.
wX
*
(
C
.
wa
-
1.
)
);
y4
=
pow
(
1.
+
yyy
,
1.
/
C
.
wX
);
x
=
-
x
*
x
*
C
.
kcourb
+
x
*
x
*
x
*
C
.
omegaM
*
y4
;
break
;
case
(
3
)
:
//TV Interacting DE Model (wa is delta)
yy
=
C
.
omegaX
*
pow
(
x
,
3.
*
(
1.
+
C
.
wX
)
);
yyy
=
(
C
.
omegaM
/
(
C
.
wa
+
3.
*
C
.
wX
)
)
*
(
C
.
wa
*
pow
(
x
,
3.
*
(
1.
+
C
.
wX
))
+
3.
*
C
.
wX
*
pow
(
x
,(
3.
-
C
.
wa
))
);
x
=
-
x
*
x
*
C
.
kcourb
+
yy
+
yyy
;
break
;
case
(
4
)
:
//TV Holographic Ricci Scale with CPL
r0
=
C
.
omegaM
/
(
1.
-
C
.
omegaM
);
e1
=
(
3.
/
2.
)
*
(
(
1.
+
r0
+
C
.
wX
+
4
*
C
.
wa
)
/
(
1.
+
r0
+
3.
*
C
.
wa
)
);
e2
=
(
-
1.
/
2.
)
*
(
(
1.
+
r0
-
3.
*
C
.
wX
)
/
(
1.
+
r0
+
3.
*
C
.
wa
)
)
;
frac
=
(
1.
+
r0
+
3.
*
C
.
wa
*
(
x
-
1.
)
/
x
)
/
(
1.
+
r0
)
;
yy
=
pow
(
x
,
e1
);
yyy
=
pow
(
frac
,
e2
);
x
=
(
yy
*
yyy
)
*
(
yy
*
yyy
);
break
;
default:
fprintf
(
stderr
,
"ERROR: Unknown cosmological model %d
\n
"
,
C
.
model
);
exit
(
E_COSMO_MODEL
);
break
;
}
if
(
x
<=
0
)
{
fprintf
(
stderr
,
"ERROR : H^2(z)<=0 produced (z,omegaM,omegaX,wX,wa) = (%.3lf,%.3lf,%.3lf,%.3lf,%.3lf)
\n
"
,
z
,
C
.
omegaM
,
C
.
omegaX
,
C
.
wX
,
C
.
wa
);
exit
(
-
1
);
}
return
(
1.
/
sqrt
(
x
)
);
}
/**************************************************************
* Return the proper distance Dp(0,z) divided by c/H0
* chi1(z) * c/H0 = Dp(0,z) = integral( 0, z, c*dz / H(z) )
*
* Global variables used :
* - in chiz() : C
* */
static
double
chi1
(
double
z
)
{
double
rez
;
rez
=
integral_chiz_ab
(
0.
,
z
);
return
rez
;
}
/**************************************************************
* Return the proper distance Dp(z1,z2) divided by c/H0
* chi2(z) * c/H0 = Dp(z1,z2) = integral( z1, z2, c*dz / H(z) )
*
* Global variables used :
* - in chiz() : C
*/
static
double
chi2
(
double
z1
,
double
z2
)
{
double
rez
;
rez
=
integral_chiz_ab
(
z1
,
z2
);
return
rez
;
}
static
double
chiz_gsl
(
double
z
,
void
*
param
)
{
return
chiz
(
z
);
}
static
double
integral_chiz_ab
(
double
a
,
double
b
)
{
gsl_function
f
;
f
.
function
=
&
chiz_gsl
;
const
int
limit
=
10
;
gsl_integration_workspace
*
w1
=
gsl_integration_workspace_alloc
(
limit
);
double
rez
,
err
;
gsl_integration_qag
(
&
f
,
a
,
b
,
0
,
1e-6
,
limit
,
GSL_INTEG_GAUSS15
,
w1
,
&
rez
,
&
err
);
gsl_integration_workspace_free
(
w1
);
return
rez
;
}
Event Timeline
Log In to Comment