Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93219796
resolution_augmented_lagrangian.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 27, 03:05
Size
40 KB
Mime Type
text/x-c++
Expires
Fri, Nov 29, 03:05 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22598042
Attached To
rAKA akantu
resolution_augmented_lagrangian.cc
View Options
/**
* @file resolution_augmented_lagrangian.cc
*
* @author Alejandro M. Aragón <alejandro.aragon@epfl.ch>
*
* @date creation: Mon Sep 15 2014
* @date last modification: Wed Sep 17 2014
*
* @brief contact resolution classes
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
//#include "resolution_augmented_lagrangian.hh"
#include "resolution_augmented_lagrangian.hh"
#define COUT(name) std::cout << std::string(#name) << ": " << name << std::endl;
__BEGIN_AKANTU__
template <int Dim>
void ContactResolution<Dim, _static, _augmented_lagrangian>::initialize() {
// give priority to command line arguments instead of those in a file
if (contact_argparser.has("aka_penalty"))
options_[Epsilon] = contact_argparser["aka_penalty"];
else
flags_[Automatic_penalty_parameter] = true;
if (contact_argparser.has("aka_alpha"))
options_[Alpha] = contact_argparser["aka_alpha"];
if (contact_argparser.has("aka_utol"))
options_[Multiplier_tol] = contact_argparser["aka_utol"];
if (contact_argparser.has("aka_ntol"))
options_[Newton_tol] = contact_argparser["aka_ntol"];
if (contact_argparser.has("aka_usteps"))
options_[Multiplier_max_steps] = contact_argparser["aka_usteps"];
if (contact_argparser.has("aka_nsteps"))
options_[Newton_max_steps] = contact_argparser["aka_nsteps"];
if (contact_argparser.has("aka_verbose"))
flags_[Verbose] = true;
}
template <int Dim>
ContactResolution<Dim, _static, _augmented_lagrangian>::ContactResolution(
model_type &m)
: Parsable(_st_contact), model_(m),
multiplier_dumper_(m.getMesh().getNbNodes(), 3),
pressure_dumper_(m.getMesh().getNbNodes(), 3) {
// register dumpers
m.getMesh().addDumpFieldExternal("multipliers", multiplier_dumper_);
m.getMesh().addDumpFieldExternal("pressure", pressure_dumper_);
// register parameters from the file
registerParam("penalty", options_[Epsilon], _pat_parsable,
"Penalty parameter for Augmented-Lagrangian formulation");
registerParam("alpha", options_[Alpha], 1., _pat_parsable,
"Multiplier for values of the penalty parameter");
registerParam("utol", options_[Multiplier_tol], 1e-4, _pat_parsable,
"Tolerance used for multipliers in the Uzawa method");
registerParam("ntol", options_[Newton_tol], 1e-4, _pat_parsable,
"Tolerance used in the Newton-Raphson inner convergence loop");
registerParam("usteps", options_[Multiplier_max_steps], 100., _pat_parsable,
"Maximum number of steps allowed in the Uzawa loop");
registerParam("nsteps", options_[Newton_max_steps], 100., _pat_parsable,
"Maximum number of steps allowed in the Newton-Raphson loop");
// register parameters from the command line
contact_argparser.addArgument(
"--aka_penalty", "Penalty parameter for Augmented-Lagrangian formulation",
1, cppargparse::_float);
contact_argparser.addArgument(
"--aka_alpha", "Multiplier for values of the penalty parameter", 1,
cppargparse::_float);
contact_argparser.addArgument(
"--aka_utol", "Tolerance used for multipliers in the Uzawa method", 1,
cppargparse::_float);
contact_argparser.addArgument(
"--aka_ntol",
"Tolerance used in the Newton-Raphson inner convergence loop", 1,
cppargparse::_float);
contact_argparser.addArgument(
"--aka_usteps", "Maximum number of steps allowed in the Uzawa loop", 1,
cppargparse::_float);
contact_argparser.addArgument(
"--aka_nsteps",
"Maximum number of steps allowed in the Newton-Raphson loop", 1,
cppargparse::_float);
contact_argparser.addArgument("--aka_verbose", "Verbose output flag", 0,
cppargparse::_boolean);
}
template <int Dim>
void
ContactResolution<Dim, _static, _augmented_lagrangian>::solveContactStepImpl(
SearchBase *sp, Int2Type<_generalized_newton> gn) {
ContactResolution &cd = *this;
model_.implicitPred();
model_.updateResidual();
AKANTU_DEBUG_ASSERT(model_.stiffness_matrix != NULL,
"You should first initialize the implicit solver and "
"assemble the stiffness matrix");
//** comments that start like this will comment on the work that has to be
//** done for the implementation of the frictional terms in the code
UInt k = 0;
UInt ntotal = 0;
std::list<int> nt;
// get global stiffness matrix and force vector
SparseMatrix &K = model_.getStiffnessMatrix();
Array<Real> &F = model_.getResidual();
// get size of the whole system
UInt original = model_.increment->getSize() * Dim;
UInt size = original + sm_.size();
//** the size variable at this point is computed by adding only the number
//** of slave nodes because for each slave node there's a lagrangian
//** multiplier for the normal contact assigned to it. In the case of
//** frictional contact, this variable will have to account for 2 (3)
//** multipliers for each in slave node in 2D (3D), accounting for the
//** tangential components.
contact_status_ = std::map<UInt, bool>();
status_change_ = std::map<UInt, int>();
size_t ccc = 0;
for (auto g : gaps_) {
if (std::abs(g.second) <= 1.e-10) {
contact_status_[g.first] = true;
++ccc;
}
}
Array<Real> solution(size);
Array<Real> rhs(size);
rhs.clear();
// extend data structures to consider Lagrange multipliers
K.resize(size);
//** with the right value of the 'size' variable, all these data structures
//** will be resized accordingly
cout << std::boolalpha;
if (cd[Verbose])
cout << "- Start Generalized Newton:" << endl;
UInt j = 0;
bool converged = false;
bool converged_multiplier = false;
Real fnorm = 0;
do {
Real nerror = 0.;
cd.niter_ = j;
// assemble material matrix
model_.assembleStiffnessMatrix();
// copy residual to rhs
std::copy_n(F.storage(), original, rhs.storage());
// compute contribution to tangent matrix and residual
Real dummy;
computeTangentAndResidual(solution, rhs, sp, dummy, gn);
//** The computeTangentAndResidual is where the major development for the
//** frictional part will take place.
//** All the terms coded in this function into the stiffness matrix and the
//** force vector take into account only the normal contact component. The
//** implementation of the frictional part will include terms for the
//** tangential multipliers. The process I followed for the implementation
//** was to code the stiffness matrix terms from the book by Laursen
//** (Computational Contact and Impact Mechanics). I then took the terms
//** involving the lagrangian multiplier part from the thesis by Grzegorz
//** Pietrzak (Continuum mechanics modelling and augmented Lagrangian
//** formulation of large deformation frictional contact problems) as
//** these terms were missing in the Laursen book. Some little changes had
//** to be made into these terms, as Laursen and Pietrzak use different
//** conventions for the sign of the gap function. In Pietrzak's thesis,
//** the residual terms are given following Eqn. 6.20 (page 146), and the
//** stiffness terms in following equation 6.25 (page 149).
//** I suggest to start by the implementation of the Uzawa method, as it is
//** not required to code the tangential lagrangian multiplier terms of
//** Pietrzak
// solve
model_.template solve<IntegrationScheme2ndOrder::_displacement_corrector>(
solution, 1., true, true, rhs);
// copy the solution of the system to increment for the primal variable only
std::copy_n(solution.begin(), model_.increment->getSize() * Dim,
model_.increment->storage());
// copy the solution of the system to increment for the lagrange multiplier
size_t m = 0;
std::vector<Real> multiplier_check(multipliers_.size());
vector_type v_old(multipliers_.size());
vector_type v_new(v_old);
for (auto &pair : multipliers_) {
v_old[m] = pair.second;
v_new[m] = v_old[m] + solution[original + m];
multiplier_check[m] = pair.second;
multipliers_[pair.first] += solution[original + m];
multiplier_check[m] -= pair.second;
++m;
}
Real sum_multiplier = 0.;
for (auto m : multiplier_check)
sum_multiplier += m * m;
//** this check basically computes the L_2 norm of the lagrange multiplier
//** difference, so this test may change when implementing the frictional
//** part
Real mnorm = sqrt(sum_multiplier);
Real abs_tol = cd[Multiplier_tol];
if (j == 0)
fnorm = mnorm;
converged_multiplier =
(mnorm <= abs_tol || mnorm <= abs_tol * abs_tol * fnorm);
model_.implicitCorr();
model_.updateResidual();
converged =
model_.template testConvergence<_scc_increment>(cd[Newton_tol], nerror);
if (cd[Verbose]) {
size_t w = 10;
cout << std::setw(2) << j << ": Primal: " << std::setw(w)
<< std::setprecision(4) << std::right << nerror
<< " <= " << cd[Newton_tol] << " = " << std::left << std::setw(5)
<< (nerror < cd[Newton_tol]) << " \tDual: " << std::setw(w)
<< std::setprecision(4) << std::right << mnorm
<< " <= " << cd[Multiplier_tol] << " = "
<< (mnorm <= cd[Multiplier_tol]) << ", " << std::setw(w) << mnorm
<< " <= " << abs_tol * abs_tol * fnorm << " = "
<< (mnorm <= abs_tol * abs_tol * fnorm) << endl;
}
++j;
AKANTU_DEBUG_INFO("[" << _scc_increment << "] Convergence iteration "
<< std::setw(std::log10(cd[Newton_max_steps])) << j
<< ": error " << nerror << (converged ? " < " : " > ")
<< cd[Newton_tol] << std::endl);
} while (!(converged && converged_multiplier) && j < cd[Newton_max_steps]);
if (j == cd[Newton_max_steps]) {
cout << "*** ERROR *** Newton-Raphson loop did not converge within max "
"number of iterations: " << cd[Newton_max_steps] << endl;
exit(1);
}
nt.push_back(j);
ntotal += j;
AKANTU_DEBUG_INFO("[" << _scc_increment << "] Uzawa convergence iteration "
<< std::setw(std::log10(cd[Newton_max_steps])) << k
<< std::endl);
cout << "Generalized Newton iterations: " << j << endl;
// dump vtk files
this->dump();
}
template <int Dim>
void
ContactResolution<Dim, _static, _augmented_lagrangian>::solveContactStepImpl(
SearchBase *sp, Int2Type<_uzawa> uz) {
ContactResolution &cd = *this;
model_.implicitPred();
model_.updateResidual();
AKANTU_DEBUG_ASSERT(model_.stiffness_matrix != NULL,
"You should first initialize the implicit solver and "
"assemble the stiffness matrix");
//** comments that start like this will comment on the work that has to be
//** done for the implementation of the frictional terms in the code
// implementation of the Uzawa method for solving contact
bool uzawa_converged = false;
static UInt step = 0;
UInt k = 0;
UInt ntotal = 0;
std::list<int> nt;
std::ofstream ofs;
ofs.open("iterations.out", std::ofstream::out | std::ofstream::app);
// initialize Lagrange multipliers
// NOTE: It doesn't make any difference to start from the previous
// converged solution of Lagrange multipliers
real_map lambda_new;
cout << std::boolalpha;
if (cd[Verbose])
cout << "- Start Uzawa:" << endl;
do {
Real uerror = 0.;
bool converged = false;
UInt j = 0;
cd.uiter_ = k;
do {
Real nerror = 0.;
cd.niter_ = j;
// assemble material matrix
model_.assembleStiffnessMatrix();
// compute contribution to tangent matrix and residual
uzawa_converged = computeTangentAndResidual(lambda_new, sp, uerror, uz);
//** The computeTangentAndResidual is where the major development for the
//** frictional part will take place.
//** All the terms coded in this function into the stiffness matrix and
//** the force vector take into account only the normal contact component.
//** The implementation of the frictional part will include terms for the
//** tangential multipliers. The process I followed for the implementation
//** was to code the stiffness matrix terms from the book by Laursen
//** (Computational Contact and Impact Mechanics).
//** I suggest you start by the implementing the Uzawa method first,
//** before jumping to the more involved implementation of the tangential
//** lagrangian multiplier terms of Pietrzak
// solve
model_.template solve<IntegrationScheme2ndOrder::_displacement_corrector>(
*model_.increment, 1., true, true);
model_.implicitCorr();
model_.updateResidual();
converged = model_.template testConvergence<_scc_increment>(
cd[Newton_tol], nerror);
if (cd[Verbose])
cout << " Newton: " << j << ", " << nerror << " < " << cd[Newton_tol]
<< " = " << (nerror < cd[Newton_tol]) << endl;
++j;
AKANTU_DEBUG_INFO("[" << _scc_increment << "] Convergence iteration "
<< std::setw(std::log10(cd[Newton_max_steps])) << j
<< ": error " << nerror
<< (converged ? " < " : " > ") << cd[Newton_tol]
<< std::endl);
} while (!converged && j < cd[Newton_max_steps]);
if (cd[Verbose])
cout << " Uzawa: " << k << ", " << uerror << " < " << cd[Multiplier_tol]
<< " = " << (uerror < cd[Multiplier_tol]) << endl;
if (j == cd[Newton_max_steps]) {
cout << "*** ERROR *** Newton-Raphson loop did not converge within max "
"number of iterations: " << cd[Newton_max_steps] << endl;
exit(1);
}
nt.push_back(j);
ntotal += j;
// increment uzawa loop counter
++k;
AKANTU_DEBUG_INFO("[" << _scc_increment << "] Uzawa convergence iteration "
<< std::setw(std::log10(cd[Newton_max_steps])) << k
<< std::endl);
// update lagrange multipliers
cd.multipliers_ = lambda_new;
} while (!uzawa_converged && k < cd[Multiplier_max_steps]);
if (k == cd[Multiplier_max_steps]) {
cout << "*** ERROR *** Uzawa loop did not converge within max number of "
"iterations: " << cd[Multiplier_max_steps] << endl;
exit(1);
}
cout << "Summary: Uzawa [" << k << "]: Newton [" << ntotal << "]:";
for (int n : nt)
cout << " " << n;
cout << endl;
ofs << std::setw(10) << ++step << std::setw(10) << k << std::setw(10)
<< ntotal << endl;
ofs.close();
this->dump();
}
template <int Dim>
void ContactResolution<Dim, _static, _augmented_lagrangian>::dump() {
multiplier_dumper_.clear();
pressure_dumper_.clear();
for (auto v : multipliers_) {
element_type &el = sm_[v.first];
if (el == element_type())
continue;
auto n = el.normal();
Real lambda = v.second;
for (size_t i = 0; i < n.size(); ++i)
multiplier_dumper_(v.first, i) = lambda * n[i];
// dump pressures only if area is associated with node
auto it = areas_.find(v.first);
if (it != areas_.end())
for (size_t i = 0; i < n.size(); ++i) {
Real a = it->second;
assert(a != 0.);
pressure_dumper_(v.first, i) = lambda * n[i] / a;
}
else
cout << "*** WARNING *** Zero area for slave node " << v.first << endl;
}
model_.dump();
}
template <int Dim>
void
ContactResolution<Dim, _static, _augmented_lagrangian>::getPenaltyValues() {
cout << "*** INFO *** Obtaining penalty parameters automatically. ";
const SparseMatrix &Kconst = model_.getStiffnessMatrix();
Real ave = 0.;
size_t k = 0;
// loop over pairs
for (auto it = sm_.begin(); it != sm_.end(); ++it) {
auto slave = it->first;
auto master = it->second;
if (master != element_type()) {
std::vector<UInt> conn(master.numNodes() + 1); // 1 slave (not hardcoded)
conn[0] = slave;
for (UInt i = 0; i < master.numNodes(); ++i)
conn[1 + i] = master.node(i);
// compute normal
vector_type nu = master.normal();
// carry out stiffness multiplication with the normal
// the product Kij*nj would give the force for a unit displacement
// (i.e., the stiffness needed to move the node by 1)
matrix_type r(Kconst.getSize(), master.numNodes() + 1);
// loop over stifness matrix dimension
for (size_t i = 0; i < Kconst.getSize(); ++i)
// loop over problem dimensions
for (int j = 0; j < Dim; ++j)
// loop over nodes considered
for (size_t k = 0; k < master.numNodes() + 1; ++k)
r(i, k) += Kconst(i, conn[k] + j) * nu(j);
// get results (norm of each column in r)
vector_type rsum(master.numNodes() + 1);
for (size_t i = 0; i < rsum.size(); ++i)
for (size_t j = 0; j < r.rows(); ++j)
rsum(i) += r(j, i) * r(j, i);
// get average value as the penalty parameter
Real epsilon = 0.;
for (size_t i = 0; i < rsum.size(); ++i)
epsilon += sqrt(rsum(i));
epsilon /= master.numNodes() + 1;
penalty_[slave] = epsilon;
ave += penalty_[slave];
++k;
}
// dummy master
else {
// carry out stiffness multiplication with the normal
// the product Kij*nj would give the force for a unit displacement
// (i.e., the stiffness needed to move the node by 1)
vector_type r(Kconst.getSize());
// loop over stifness matrix dimension
for (size_t i = 0; i < Kconst.getSize(); ++i)
// loop over problem dimensions
for (int j = 0; j < Dim; ++j)
// loop over nodes considered
r(i) += Kconst(i, slave + j) * 1. / Dim;
// get results (norm of each column in r)
Real epsilon = 0;
for (size_t i = 0; i < r.size(); ++i)
epsilon += r(i) * r(i);
epsilon = sqrt(epsilon);
penalty_[slave] = epsilon;
ave += penalty_[slave];
++k;
}
}
cout << "Average value: " << (*this)[Alpha] * ave / k << endl;
}
template <int dim> struct TangentTraits;
template <> struct TangentTraits<2> {
constexpr static UInt dim = 2;
constexpr static ElementType master_type = _segment_2;
constexpr static InterpolationType interpolation_type =
_itp_lagrange_segment_2;
typedef Point<dim> point_type;
typedef array::Array<1, Real> vector_type;
typedef array::Array<2, Real> matrix_type;
typedef SolidMechanicsModel model_type;
template <class element_type>
static bool projects(const point_type &s, const element_type &master,
const Array<Real> &position) {
return has_projection(s, point_type(&position(master.node(0))),
point_type(&position(master.node(1))));
}
template <class real_tuple, class element_type, class vector_type>
static std::tuple<matrix_type, vector_type>
computeTangentAndResidual(model_type &model, real_tuple t,
element_type &master, const vector_type &sh,
const matrix_type &dsh, const vector_type &N) {
const Array<Real> &position = model.getCurrentPosition();
Real gap = std::get<0>(t);
Real s1 = std::get<1>(t);
Real s2 = std::get<2>(t);
// compute the point on the surface
point_type a(&position(master.node(0)));
point_type b(&position(master.node(1)));
vector_type nu = master.normal();
// compute vector T
point_type tau = dsh(0, 0) * a + dsh(0, 1) * b;
vector_type T(dim * (master.numNodes() + 1));
for (UInt i = 0; i < dim; ++i) {
T[i] = tau[i];
for (UInt j = 0; j < master.numNodes(); ++j)
T[(1 + j) * dim + i] = -tau[i] * sh[j];
}
// compute N1
vector_type N1(dim * (master.numNodes() + 1));
for (UInt i = 0; i < dim; ++i) {
for (UInt j = 0; j < master.numNodes(); ++j)
N1[(1u + j) * dim + i] = -nu[i] * dsh(0u, j);
}
// compute m11
Real m11 = tau * tau;
// compute D1
vector_type D1 = T + gap * N1;
D1 *= 1. / m11;
// Note: N1bar = N1 - k11*D1, but since k11 = 0 for 2D, then
// N1bar = N1
vector_type &N1bar = N1;
// stiffness matrix (only non-zero terms for 2D implementation)
matrix_type kc = s1 * N * transpose(N); // first term
kc += (s2 * gap * m11) * N1bar * transpose(N1bar); // second term
kc -= s2 * D1 * transpose(N1); // sixth term
kc -= s2 * N1 * transpose(D1); // eight term
// residual vector
vector_type fc = s2 * N;
assert(kc.rows() == fc.size());
return std::make_tuple(kc, fc);
}
template <class element_type>
static std::tuple<point_type, vector_type>
compute_projection(const point_type &s, element_type &master) {
Distance_minimizator<dim, master_type> dm(s, master.coordinates());
vector_type xi(1, dm.master_coordinates()[0]);
return std::make_tuple(dm.point(), xi);
}
};
template <> struct TangentTraits<3> {
constexpr static UInt dim = 3;
constexpr static ElementType master_type = _triangle_3;
constexpr static InterpolationType interpolation_type =
_itp_lagrange_triangle_3;
typedef Point<dim> point_type;
typedef array::Array<1, Real> vector_type;
typedef array::Array<2, Real> matrix_type;
typedef SolidMechanicsModel model_type;
template <class element_type>
static bool projects(const point_type &s, const element_type &master,
const Array<Real> &position) {
return point_has_projection_to_triangle(
s, point_type(&position(master.node(0))),
point_type(&position(master.node(1))),
point_type(&position(master.node(2))));
}
template <class real_tuple, class element_type, class vector_type>
static std::tuple<matrix_type, vector_type>
computeTangentAndResidual(model_type &model, real_tuple t,
element_type &master, const vector_type &sh,
const matrix_type &dsh, const vector_type &N) {
const Array<Real> &position = model.getCurrentPosition();
Real gap = std::get<0>(t);
Real s1 = std::get<1>(t);
Real s2 = std::get<2>(t);
Real s3 = std::get<3>(t);
// compute the point on the surface
point_type a(&position(master.node(0)));
point_type b(&position(master.node(1)));
point_type c(&position(master.node(2)));
vector_type nu = master.normal();
point_type tau1 = dsh(0, 0) * a + dsh(0, 1) * b + dsh(0, 2) * c;
point_type tau2 = dsh(1, 0) * a + dsh(1, 1) * b + dsh(1, 2) * c;
vector_type nucheck(3);
Math::vectorProduct3(&tau1[0], &tau2[0], &nucheck[0]);
Math::normalize3(&nucheck[0]);
if ((nucheck - nu)().norm() > 1.0e-10) {
cout << "*** ERROR *** Normal failed" << endl;
cout << "nu1: " << nu << endl;
cout << "nu2: " << nucheck << endl;
exit(1);
}
// compute vectors T1, T2, N1, N2
size_t vsize = dim * (master.numNodes() + 1);
vector_type T1(vsize), T2(vsize), N1(vsize), N2(vsize);
for (UInt i = 0; i < dim; ++i) {
T1[i] = tau1[i];
T2[i] = tau2[i];
for (UInt j = 0; j < master.numNodes(); ++j) {
T1[(1 + j) * dim + i] = -tau1[i] * sh[j];
T2[(1 + j) * dim + i] = -tau2[i] * sh[j];
N1[(1 + j) * dim + i] = -nu[i] * dsh(0u, j);
N2[(1 + j) * dim + i] = -nu[i] * dsh(1u, j);
}
}
// compute matrix A = m + k*g (but kappa is zero for linear elements)
Real A11 = tau1 * tau1;
Real A12 = tau1 * tau2;
Real A22 = tau2 * tau2;
Real detA = A11 * A22 - A12 * A12;
// compute vectors D1, D2
vector_type D1 =
(1 / detA) * (A22 * (T1 + gap * N1)() - A12 * (T2 + gap * N2)())();
vector_type D2 =
(1 / detA) * (A11 * (T2 + gap * N2)() - A12 * (T1 + gap * N1)())();
// Note: N1bar = N1 - k12*D2, but since k12 = 0 for linear elements, then
// N1bar = N1, N2bar = N2
vector_type &N1bar = N1;
vector_type &N2bar = N2;
// stiffness matrix (only non-zero terms for 3D implementation with linear
// elements)
// get covariant terms (det(A) = det(inv(A))
Real m11 = A22 / detA;
Real m12 = -A12 / detA;
Real m22 = A11 / detA;
// 1st term:
// epsilon * Heaviside(lambda + epsilon gap) * N * N' = s1 * N * N'
matrix_type kc = s1 * N * transpose(N);
// 2nd term:
// t_N * gap * m_11 * N1_bar * N1_bar', where t_N = <lambda + epsilon*gap>
kc += (s3 * m11) * N1bar * transpose(N1bar);
// 3rd and 4th terms:
// t_N * gap * m_12 * (N1_bar * N2_bar' + N2_bar * N1_bar')
matrix_type tmp = N1bar * transpose(N2bar);
tmp += N2bar * transpose(N1bar);
kc += (s3 * m12) * tmp;
// 5th term:
// t_N * gap * m_22 * N2_bar * N2_bar'
kc += (s3 * m22) * N2bar * transpose(N2bar);
// 6th term:
// - t_N * D1 * N1'
kc -= s2 * D1 * transpose(N1);
// 7th term:
// - t_N * D2 * N2'
kc -= s2 * D2 * transpose(N2);
// 8th term:
// - t_N * N1 * D1'
kc -= s2 * N1 * transpose(D1);
// 9th term:
// - t_N * N2 * D2'
kc -= s2 * N2 * transpose(D2);
// residual vector
vector_type fc = s2 * N;
assert(kc.rows() == fc.size());
return std::make_tuple(kc, fc);
}
//! Function template specialization for inversion of a \f$ 3 \times 3 \f$
// matrix.
template <class matrix_type>
static std::pair<matrix_type, Real> invert(matrix_type &A) {
// obtain determinant of the matrix
Real det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) -
A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) +
A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]);
// compute inverse
matrix_type inv(3, 3, 1. / det);
inv[0][0] *= A[1][1] * A[2][2] - A[1][2] * A[2][1];
inv[0][1] *= A[0][2] * A[2][1] - A[0][1] * A[2][2];
inv[0][2] *= -A[0][2] * A[1][1] + A[0][1] * A[1][2];
inv[1][0] *= A[1][2] * A[2][0] - A[1][0] * A[2][2];
inv[1][1] *= A[0][0] * A[2][2] - A[0][2] * A[2][0];
inv[1][2] *= A[0][2] * A[1][0] - A[0][0] * A[1][2];
inv[2][0] *= -A[1][1] * A[2][0] + A[1][0] * A[2][1];
inv[2][1] *= A[0][1] * A[2][0] - A[0][0] * A[2][1];
inv[2][2] *= -A[0][1] * A[1][0] + A[0][0] * A[1][1];
return std::make_pair(inv, det);
}
template <class vector_type, class point_type>
static vector_type invert_map(const point_type &s, const point_type &a,
const point_type &b, const point_type &c) {
typedef array::Array<2, Real> matrix_type;
// matrix for inverse
matrix_type A = { { b[0] - a[0], c[0] - a[0], a[0] },
{ b[1] - a[1], c[1] - a[1], a[1] },
{ b[2] - a[2], c[2] - a[2], a[2] } };
std::pair<matrix_type, Real> Ainv = invert(A);
vector_type x = { s[0], s[1], s[2] };
vector_type r1 = Ainv.first * x;
return vector_type{ r1[0],
r1[1] }; // return only the first two components of r1
}
template <class element_type>
static std::tuple<point_type, vector_type>
compute_projection(const point_type &s, element_type &master) {
auto coord = master.coordinates();
// compute the point on the surface
point_type a(coord[0]);
point_type b(coord[1]);
point_type c(coord[2]);
point_type p = closest_point_to_triangle(s, a, b, c);
vector_type xi = invert_map<vector_type, point_type>(p, a, b, c);
// Distance_minimizator<dim, TangentTraits<dim>::master_type> dm(
// s, master.coordinates());
// xi = vector_type(dim - 1);
// for (int i = 0; i < dim - 1; ++i)
// xi[i] = dm.master_coordinates()[i];
// point_type p = dm.point();
return std::make_tuple(p, xi);
}
};
template <int dim>
bool ContactResolution<dim, _static, _augmented_lagrangian>::
computeTangentAndResidual(real_map &lambda_new, SearchBase *cp, Real &error,
Int2Type<_uzawa>) {
const Array<Real> &position = model_.getCurrentPosition();
const Real tol = (*this)[Multiplier_tol];
// get global stiffness matrix and force vector
SparseMatrix &K = model_.getStiffnessMatrix();
Array<Real> &F = model_.getResidual();
const Array<Int> &eqnum =
model_.getDOFSynchronizer().getLocalDOFEquationNumbers();
static bool auto_flag = true;
if (auto_flag) {
auto_flag = false;
if (!(*this)[Automatic_penalty_parameter]) {
Real epsilon = (*this)[Epsilon];
for (auto it = sm_.begin(); it != sm_.end(); ++it)
penalty_[it->first] = epsilon;
cout << "*** INFO *** Uniform penalty parameter used for all slaves: "
<< epsilon << endl;
;
}
// else get penalty values automatically
else
getPenaltyValues();
}
Real lm_diff = 0;
Real lm_max = 0;
auto it = sm_.begin();
while (it != sm_.end()) {
auto slave = it->first;
Real epsilon = (*this)[Alpha] * penalty_[slave];
AKANTU_DEBUG_ASSERT(epsilon != 0, "Penalty value cannot be zero");
// get slave point
point_type s(&position(slave));
auto master = it->second;
bool no_master = master == element_type();
// if node lies outside triangle
if (no_master || !TangentTraits<dim>::projects(s, master, position)) {
auto r = cp->search(&position(slave));
// try to find a new master
if (r != -1) {
it->second = master =
element_type(model_, TangentTraits<dim>::master_type, r);
}
// else remove master-slave pair from simulation
else {
master = element_type();
gaps_.erase(slave);
lambda_new.erase(slave);
++it;
continue;
}
}
assert(master.type == TangentTraits<dim>::master_type);
Distance_minimizator<dim, TangentTraits<dim>::master_type> dm(
s, master.coordinates());
vector_type xi = vector_type(dim - 1);
for (int i = 0; i < dim - 1; ++i)
xi[i] = dm.master_coordinates()[i];
point_type p = dm.point();
// compute normal
vector_type nu = master.normal();
point_type nup(static_cast<const Real *>(nu.data()));
// compute and save gap
Real gap = -(nup * (s - p));
gaps_[slave] = gap;
Real lambda_hat = multipliers_[slave] + epsilon * gap;
if (lambda_hat < 0) {
// increase iterator
++it;
// save value of lambda
lambda_new[slave] = 0;
continue;
}
Real s1 = epsilon * Heaviside(lambda_hat);
Real s2 = Macauley(lambda_hat); // max(0,lambda_hat)
Real s3 = s2 * gap;
std::vector<UInt> conn(master.numNodes() + 1); // 1 slave (not hardcoded)
conn[0] = slave;
for (UInt i = 0; i < master.numNodes(); ++i)
conn[1 + i] = master.node(i);
// evaluate shape functions at slave master coordinate
vector_type sh(master.numNodes());
InterpolationElement<TangentTraits<dim>::interpolation_type>::computeShapes(
xi, sh);
// compute vector N
vector_type N(dim * (master.numNodes() + 1));
for (UInt i = 0; i < dim; ++i) {
N[i] = nu[i];
for (UInt j = 0; j < master.numNodes(); ++j)
N[(1 + j) * dim + i] = -nu[i] * sh[j];
}
matrix_type dsh(dim - 1, master.numNodes());
InterpolationElement<TangentTraits<dim>::interpolation_type>::computeDNDS(
xi, dsh);
// obtain contribution to stiffness matrix and force vector depending on
// the dimension
auto t = TangentTraits<dim>::computeTangentAndResidual(
model_, std::make_tuple(gap, s1, s2, s3), master, sh, dsh, N);
matrix_type &kc = std::get<0>(t);
vector_type &fc = std::get<1>(t);
// assemble local components into global matrix and vector
std::vector<UInt> eq;
for (UInt i = 0; i < conn.size(); ++i)
for (UInt j = 0; j < dim; ++j)
eq.push_back(eqnum(conn[i] * dim + j));
for (UInt i = 0; i < kc.rows(); ++i) {
F[eq[i]] += fc(i);
for (UInt j = i; j < kc.columns(); ++j) {
K.addToProfile(eq[i], eq[j]);
K(eq[i], eq[j]) += kc(i, j);
}
}
// update multiplier
lambda_new[slave] = s2;
Real lm_old = multipliers_[slave];
lm_max += lm_old * lm_old;
lm_old -= s2;
lm_diff += lm_old * lm_old;
// increase iterator
++it;
}
if (lm_max < tol) {
error = sqrt(lm_diff);
return sqrt(lm_diff) < tol;
}
error = sqrt(lm_diff / lm_max);
return sqrt(lm_diff / lm_max) < tol;
}
template <typename T>
Point<2, T>
closest_point_to_triangle(const Point<2, T> &p, const Point<2, T> &a,
const Point<2, T> &b, const Point<2, T> &c) {
return Point<2, T>();
}
template <int dim>
bool ContactResolution<dim, _static, _augmented_lagrangian>::
computeTangentAndResidual(Array<Real> &solution, Array<Real> &F,
SearchBase *cp, Real &error,
Int2Type<_generalized_newton>) {
const Array<Real> &position = model_.getCurrentPosition();
// get global stiffness matrix and force vector
SparseMatrix &K = model_.getStiffnessMatrix();
const Array<Int> &eqnum =
model_.getDOFSynchronizer().getLocalDOFEquationNumbers();
static bool auto_flag = true;
if (auto_flag) {
auto_flag = false;
if (!(*this)[Automatic_penalty_parameter]) {
Real epsilon = (*this)[Epsilon];
for (auto it = sm_.begin(); it != sm_.end(); ++it)
penalty_[it->first] = epsilon;
cout << "*** INFO *** Uniform penalty parameter used for all slaves: "
<< epsilon << endl;
;
}
// else get penalty values automatically
else
getPenaltyValues();
}
// size of original system
UInt original = model_.increment->getSize() * dim;
// multiplier count
size_t kk = 0;
auto it = sm_.begin();
while (it != sm_.end()) {
auto slave = it->first;
Real epsilon = (*this)[Alpha] * penalty_[slave];
if (status_change_[slave] != 0) {
;
epsilon *= (status_change_[slave] + 1.);
}
AKANTU_DEBUG_ASSERT(epsilon != 0, "Penalty value cannot be zero");
// get slave point
point_type s(&position(slave));
auto master = it->second;
bool no_master = master == element_type();
static std::map<UInt, bool> excluded;
// if node lies outside triangle
if (no_master || !TangentTraits<dim>::projects(s, master, position)) {
auto r = cp->search(&position(slave));
// try to find a new master
if (r != -1) {
it->second = master =
element_type(model_, TangentTraits<dim>::master_type, r);
no_master = false;
}
// else remove master-slave pair from simulation
else {
master = element_type();
no_master = true;
excluded[slave] = true;
}
}
Real gap;
vector_type xi;
if (!no_master) {
assert(master.type == TangentTraits<dim>::master_type);
auto tuple = TangentTraits<dim>::compute_projection(s, master);
point_type &p = std::get<0>(tuple);
xi = std::get<1>(tuple);
// compute normal
vector_type nu = master.normal();
point_type nup(static_cast<const Real *>(nu.data()));
// Real old_gap = gaps_[slave];
// compute and save gap
gap = -(nup * (s - p));
gaps_[slave] = gap;
// track status
// if node in contact
if (contact_status_[slave]) {
if (gap < -1.e-10) {
contact_status_[slave] = false;
++status_change_[slave];
// cout<<"["<<status_change_[slave]<<"] changing to
// non-contact status for node "<<slave<<". Gap from "<<old_gap<<" to
// "<<gap<<endl;
}
} else {
if (gap >= -1.e-10) {
contact_status_[slave] = true;
++status_change_[slave];
// cout<<"["<<status_change_[slave]<<"] changing to contact
// status for node "<<slave<<". Gap from "<<old_gap<<" to
// "<<gap<<endl;
}
}
}
Real lambda_hat = multipliers_[slave] + epsilon * gap;
// no contact
if (lambda_hat < 0 || excluded[slave]) {
size_t ii = original + kk;
// add contribution to stiffness matrix and residual vector
F[ii] = multipliers_[slave] / epsilon;
K.addToProfile(ii, ii);
K(ii, ii) += -1 / epsilon;
}
// contact
else {
Real s1 = epsilon * Heaviside(lambda_hat);
Real s2 = Macauley(lambda_hat); // max(0,lambda_hat)
Real s3 = s2 * gap;
std::vector<UInt> conn(master.numNodes() + 1); // 1 slave (not hardcoded)
conn[0] = slave;
for (UInt i = 0; i < master.numNodes(); ++i)
conn[1 + i] = master.node(i);
// evaluate shape functions at slave master coordinate
vector_type nu = master.normal();
vector_type sh(master.numNodes());
InterpolationElement<
TangentTraits<dim>::interpolation_type>::computeShapes(xi, sh);
// compute vector N
vector_type N(dim * (master.numNodes() + 1));
for (UInt i = 0; i < dim; ++i) {
N[i] = nu[i];
for (UInt j = 0; j < master.numNodes(); ++j)
N[(1 + j) * dim + i] = -nu[i] * sh[j];
}
matrix_type dsh(dim - 1, master.numNodes());
InterpolationElement<TangentTraits<dim>::interpolation_type>::computeDNDS(
xi, dsh);
// obtain contribution to stiffness matrix and force vector depending on
// the dimension
auto t = TangentTraits<dim>::computeTangentAndResidual(
model_, std::make_tuple(gap, s1, s2, s3), master, sh, dsh, N);
matrix_type &kc = std::get<0>(t);
vector_type &fc = std::get<1>(t);
Array<bool> &boundary = model_.getBlockedDOFs();
// assemble local components into global matrix and vector not taking into
// account fixed dofs
std::vector<UInt> eq(conn.size() * dim);
std::vector<bool> fixed(conn.size() * dim, false);
for (UInt i = 0; i < conn.size(); ++i)
for (UInt j = 0; j < dim; ++j) {
eq.at(i *dim + j) = eqnum(conn[i] * dim + j);
fixed.at(i *dim + j) = boundary(conn[i], j);
}
for (UInt i = 0; i < kc.rows(); ++i) {
// if dof is blocked, don't add terms
if (fixed.at(i))
continue;
F[eq[i]] += fc(i);
for (UInt j = i; j < kc.columns(); ++j) {
K.addToProfile(eq[i], eq[j]);
K(eq[i], eq[j]) += kc(i, j);
}
}
// terms corresponding to lagrangian multiplier contribution
size_t ii = original + kk;
// assemble contribution to force vector
F[ii] = -gap;
// assemble contribution to stiffness matrix (only upper-triangular)
for (UInt i = 0; i < N.size(); ++i) {
K.addToProfile(eq[i], ii);
K(eq[i], ii) -= N[i];
}
}
// increment multiplier counter
++kk;
// increase iterator
++it;
}
return true;
}
template <int Dim>
std::ostream &operator<<(
std::ostream &os,
const ContactResolution<Dim, _static, _augmented_lagrangian> &cr) {
typedef typename ContactResolution<
Dim, _static, _augmented_lagrangian>::element_type element_type;
os << "Augmented-Lagrangian resolution type. Parameters:" << endl;
if (cr[Automatic_penalty_parameter])
cout << "\tpenalty = auto" << endl;
else
cout << "\tpenalty = " << cr[Epsilon] << endl;
cout << "\talpha = " << cr[Alpha] << endl;
cout << "\tutol = " << cr[Multiplier_tol] << endl;
cout << "\tntol = " << cr[Newton_tol] << endl;
cout << "\tusteps = " << cr[Multiplier_max_steps] << endl;
cout << "\tnsteps = " << cr[Newton_max_steps] << endl;
cout << "\tverbose = " << cr[Verbose] << endl;
cout << "\n Slave nodes: ";
for (auto it = cr.sm_.begin(); it != cr.sm_.end(); ++it)
os << it->first << " ";
os << endl;
// loop over pairs
cout << "\n Slave master pairs" << endl;
for (auto it = cr.sm_.begin(); it != cr.sm_.end(); ++it) {
auto slave = it->first;
auto master = it->second;
os << "\tslave: " << slave << ", Master: ";
if (master == element_type())
os << "none" << endl;
else
os << master << endl;
}
return os;
}
template std::ostream &operator<<(
std::ostream &,
const ContactResolution<2, _static, _augmented_lagrangian> &);
template std::ostream &operator<<(
std::ostream &,
const ContactResolution<3, _static, _augmented_lagrangian> &);
template class ContactResolution<2, _static, _augmented_lagrangian>;
template class ContactResolution<3, _static, _augmented_lagrangian>;
__END_AKANTU__
Event Timeline
Log In to Comment