Page MenuHomec4science

block_reduce.cuh
No OneTemporary

File Metadata

Created
Thu, Nov 28, 09:33

block_reduce.cuh

/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2013, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* The cub::BlockReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread block.
*/
#pragma once
#include "specializations/block_reduce_raking.cuh"
#include "specializations/block_reduce_warp_reductions.cuh"
#include "../util_type.cuh"
#include "../thread/thread_operators.cuh"
#include "../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Algorithmic variants
******************************************************************************/
/**
* BlockReduceAlgorithm enumerates alternative algorithms for parallel
* reduction across a CUDA threadblock.
*/
enum BlockReduceAlgorithm
{
/**
* \par Overview
* An efficient "raking" reduction algorithm. Execution is comprised of
* three phases:
* -# Upsweep sequential reduction in registers (if threads contribute more
* than one input each). Each thread then places the partial reduction
* of its item(s) into shared memory.
* -# Upsweep sequential reduction in shared memory. Threads within a
* single warp rake across segments of shared partial reductions.
* -# A warp-synchronous Kogge-Stone style reduction within the raking warp.
*
* \par
* \image html block_reduce.png
* <div class="centercaption">\p BLOCK_REDUCE_RAKING data flow for a hypothetical 16-thread threadblock and 4-thread raking warp.</div>
*
* \par Performance Considerations
* - Although this variant may suffer longer turnaround latencies when the
* GPU is under-occupied, it can often provide higher overall throughput
* across the GPU when suitably occupied.
*/
BLOCK_REDUCE_RAKING,
/**
* \par Overview
* A quick "tiled warp-reductions" reduction algorithm. Execution is
* comprised of four phases:
* -# Upsweep sequential reduction in registers (if threads contribute more
* than one input each). Each thread then places the partial reduction
* of its item(s) into shared memory.
* -# Compute a shallow, but inefficient warp-synchronous Kogge-Stone style
* reduction within each warp.
* -# A propagation phase where the warp reduction outputs in each warp are
* updated with the aggregate from each preceding warp.
*
* \par
* \image html block_scan_warpscans.png
* <div class="centercaption">\p BLOCK_REDUCE_WARP_REDUCTIONS data flow for a hypothetical 16-thread threadblock and 4-thread raking warp.</div>
*
* \par Performance Considerations
* - Although this variant may suffer lower overall throughput across the
* GPU because due to a heavy reliance on inefficient warp-reductions, it
* can often provide lower turnaround latencies when the GPU is
* under-occupied.
*/
BLOCK_REDUCE_WARP_REDUCTIONS,
};
/******************************************************************************
* Block reduce
******************************************************************************/
/**
* \brief The BlockReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread block. ![](reduce_logo.png)
* \ingroup BlockModule
*
* \par Overview
* A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>)
* uses a binary combining operator to compute a single aggregate from a list of input elements.
*
* \par
* Optionally, BlockReduce can be specialized by algorithm to accommodate different latency/throughput workload profiles:
* -# <b>cub::BLOCK_REDUCE_RAKING</b>. An efficient "raking" reduction algorithm. [More...](\ref cub::BlockReduceAlgorithm)
* -# <b>cub::BLOCK_REDUCE_WARP_REDUCTIONS</b>. A quick "tiled warp-reductions" reduction algorithm. [More...](\ref cub::BlockReduceAlgorithm)
*
* \tparam T Data type being reduced
* \tparam BLOCK_THREADS The thread block size in threads
* \tparam ALGORITHM <b>[optional]</b> cub::BlockReduceAlgorithm enumerator specifying the underlying algorithm to use (default: cub::BLOCK_REDUCE_RAKING)
*
* \par Performance Considerations
* - Very efficient (only one synchronization barrier).
* - Zero bank conflicts for most types.
* - Computation is slightly more efficient (i.e., having lower instruction overhead) for:
* - Summation (<b><em>vs.</em></b> generic reduction)
* - \p BLOCK_THREADS is a multiple of the architecture's warp size
* - Every thread has a valid input (i.e., full <b><em>vs.</em></b> partial-tiles)
* - See cub::BlockReduceAlgorithm for performance details regarding algorithmic alternatives
*
* \par A Simple Example
* \blockcollective{BlockReduce}
* \par
* The code snippet below illustrates a sum reduction of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec4) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockReduce for 128 threads on type int
* typedef cub::BlockReduce<int, 128> BlockReduce;
*
* // Allocate shared memory for BlockReduce
* __shared__ typename BlockReduce::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Compute the block-wide sum for thread0
* int aggregate = BlockReduce(temp_storage).Sum(thread_data);
*
* \endcode
*
*/
template <
typename T,
int BLOCK_THREADS,
BlockReduceAlgorithm ALGORITHM = BLOCK_REDUCE_RAKING>
class BlockReduce
{
private:
/******************************************************************************
* Constants and typedefs
******************************************************************************/
/// Internal specialization.
typedef typename If<(ALGORITHM == BLOCK_REDUCE_WARP_REDUCTIONS),
BlockReduceWarpReductions<T, BLOCK_THREADS>,
BlockReduceRaking<T, BLOCK_THREADS> >::Type InternalBlockReduce;
/// Shared memory storage layout type for BlockReduce
typedef typename InternalBlockReduce::TempStorage _TempStorage;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
public:
/// \smemstorage{BlockReduce}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor for 1D thread blocks using a private static allocation of shared memory as temporary storage. Threads are identified using <tt>threadIdx.x</tt>.
*/
__device__ __forceinline__ BlockReduce()
:
temp_storage(PrivateStorage()),
linear_tid(threadIdx.x)
{}
/**
* \brief Collective constructor for 1D thread blocks using the specified memory allocation as temporary storage. Threads are identified using <tt>threadIdx.x</tt>.
*/
__device__ __forceinline__ BlockReduce(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(threadIdx.x)
{}
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage. Each thread is identified using the supplied linear thread identifier
*/
__device__ __forceinline__ BlockReduce(
int linear_tid) ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
:
temp_storage(PrivateStorage()),
linear_tid(linear_tid)
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage. Each thread is identified using the supplied linear thread identifier.
*/
__device__ __forceinline__ BlockReduce(
TempStorage &temp_storage, ///< [in] Reference to memory allocation having layout type TempStorage
int linear_tid) ///< [in] <b>[optional]</b> A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
:
temp_storage(temp_storage.Alias()),
linear_tid(linear_tid)
{}
//@} end member group
/******************************************************************//**
* \name Generic reductions
*********************************************************************/
//@{
/**
* \brief Computes a block-wide reduction for thread<sub>0</sub> using the specified binary reduction functor. Each thread contributes one input element.
*
* The return value is undefined in threads other than thread<sub>0</sub>.
*
* Supports non-commutative reduction operators.
*
* \smemreuse
*
* The code snippet below illustrates a max reduction of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockReduce for 128 threads on type int
* typedef cub::BlockReduce<int, 128> BlockReduce;
*
* // Allocate shared memory for BlockReduce
* __shared__ typename BlockReduce::TempStorage temp_storage;
*
* // Each thread obtains an input item
* int thread_data;
* ...
*
* // Compute the block-wide max for thread0
* int aggregate = BlockReduce(temp_storage).Reduce(thread_data, cub::Max());
*
* \endcode
*
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ReductionOp>
__device__ __forceinline__ T Reduce(
T input, ///< [in] Calling thread's input
ReductionOp reduction_op) ///< [in] Binary reduction operator
{
return InternalBlockReduce(temp_storage, linear_tid).template Reduce<true>(input, BLOCK_THREADS, reduction_op);
}
/**
* \brief Computes a block-wide reduction for thread<sub>0</sub> using the specified binary reduction functor. Each thread contributes an array of consecutive input elements.
*
* The return value is undefined in threads other than thread<sub>0</sub>.
*
* Supports non-commutative reduction operators.
*
* \blocked
*
* \smemreuse
*
* The code snippet below illustrates a max reduction of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec4) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockReduce for 128 threads on type int
* typedef cub::BlockReduce<int, 128> BlockReduce;
*
* // Allocate shared memory for BlockReduce
* __shared__ typename BlockReduce::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Compute the block-wide max for thread0
* int aggregate = BlockReduce(temp_storage).Reduce(thread_data, cub::Max());
*
* \endcode
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ReductionOp>
__device__ __forceinline__ T Reduce(
T (&inputs)[ITEMS_PER_THREAD], ///< [in] Calling thread's input segment
ReductionOp reduction_op) ///< [in] Binary reduction operator
{
// Reduce partials
T partial = ThreadReduce(inputs, reduction_op);
return Reduce(partial, reduction_op);
}
/**
* \brief Computes a block-wide reduction for thread<sub>0</sub> using the specified binary reduction functor. The first \p num_valid threads each contribute one input element.
*
* The return value is undefined in threads other than thread<sub>0</sub>.
*
* Supports non-commutative reduction operators.
*
* \blocked
*
* \smemreuse
*
* The code snippet below illustrates a max reduction of a partially-full tile of integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh>
*
* __global__ void ExampleKernel(int num_valid, ...)
* {
* // Specialize BlockReduce for 128 threads on type int
* typedef cub::BlockReduce<int, 128> BlockReduce;
*
* // Allocate shared memory for BlockReduce
* __shared__ typename BlockReduce::TempStorage temp_storage;
*
* // Each thread obtains an input item
* int thread_data;
* if (threadIdx.x < num_valid) thread_data = ...
*
* // Compute the block-wide max for thread0
* int aggregate = BlockReduce(temp_storage).Reduce(thread_data, cub::Max(), num_valid);
*
* \endcode
*
* \tparam ReductionOp <b>[inferred]</b> Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ReductionOp>
__device__ __forceinline__ T Reduce(
T input, ///< [in] Calling thread's input
ReductionOp reduction_op, ///< [in] Binary reduction operator
int num_valid) ///< [in] Number of threads containing valid elements (may be less than BLOCK_THREADS)
{
// Determine if we scan skip bounds checking
if (num_valid >= BLOCK_THREADS)
{
return InternalBlockReduce(temp_storage, linear_tid).template Reduce<true>(input, num_valid, reduction_op);
}
else
{
return InternalBlockReduce(temp_storage, linear_tid).template Reduce<false>(input, num_valid, reduction_op);
}
}
//@} end member group
/******************************************************************//**
* \name Summation reductions
*********************************************************************/
//@{
/**
* \brief Computes a block-wide reduction for thread<sub>0</sub> using addition (+) as the reduction operator. Each thread contributes one input element.
*
* The return value is undefined in threads other than thread<sub>0</sub>.
*
* \smemreuse
*
* The code snippet below illustrates a sum reduction of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockReduce for 128 threads on type int
* typedef cub::BlockReduce<int, 128> BlockReduce;
*
* // Allocate shared memory for BlockReduce
* __shared__ typename BlockReduce::TempStorage temp_storage;
*
* // Each thread obtains an input item
* int thread_data;
* ...
*
* // Compute the block-wide sum for thread0
* int aggregate = BlockReduce(temp_storage).Sum(thread_data);
*
* \endcode
*
*/
__device__ __forceinline__ T Sum(
T input) ///< [in] Calling thread's input
{
return InternalBlockReduce(temp_storage, linear_tid).template Sum<true>(input, BLOCK_THREADS);
}
/**
* \brief Computes a block-wide reduction for thread<sub>0</sub> using addition (+) as the reduction operator. Each thread contributes an array of consecutive input elements.
*
* The return value is undefined in threads other than thread<sub>0</sub>.
*
* \smemreuse
*
* The code snippet below illustrates a sum reduction of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec4) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockReduce for 128 threads on type int
* typedef cub::BlockReduce<int, 128> BlockReduce;
*
* // Allocate shared memory for BlockReduce
* __shared__ typename BlockReduce::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Compute the block-wide sum for thread0
* int aggregate = BlockReduce(temp_storage).Sum(thread_data);
*
* \endcode
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
*/
template <int ITEMS_PER_THREAD>
__device__ __forceinline__ T Sum(
T (&inputs)[ITEMS_PER_THREAD]) ///< [in] Calling thread's input segment
{
// Reduce partials
T partial = ThreadReduce(inputs, cub::Sum());
return Sum(partial);
}
/**
* \brief Computes a block-wide reduction for thread<sub>0</sub> using addition (+) as the reduction operator. The first \p num_valid threads each contribute one input element.
*
* The return value is undefined in threads other than thread<sub>0</sub>.
*
* \smemreuse
*
* The code snippet below illustrates a sum reduction of a partially-full tile of integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh>
*
* __global__ void ExampleKernel(int num_valid, ...)
* {
* // Specialize BlockReduce for 128 threads on type int
* typedef cub::BlockReduce<int, 128> BlockReduce;
*
* // Allocate shared memory for BlockReduce
* __shared__ typename BlockReduce::TempStorage temp_storage;
*
* // Each thread obtains an input item (up to num_items)
* int thread_data;
* if (threadIdx.x < num_valid)
* thread_data = ...
*
* // Compute the block-wide sum for thread0
* int aggregate = BlockReduce(temp_storage).Sum(thread_data, num_valid);
*
* \endcode
*
*/
__device__ __forceinline__ T Sum(
T input, ///< [in] Calling thread's input
int num_valid) ///< [in] Number of threads containing valid elements (may be less than BLOCK_THREADS)
{
// Determine if we scan skip bounds checking
if (num_valid >= BLOCK_THREADS)
{
return InternalBlockReduce(temp_storage, linear_tid).template Sum<true>(input, num_valid);
}
else
{
return InternalBlockReduce(temp_storage, linear_tid).template Sum<false>(input, num_valid);
}
}
//@} end member group
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)

Event Timeline