Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93982137
dof_manager.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Dec 3, 00:31
Size
37 KB
Mime Type
text/x-c
Expires
Thu, Dec 5, 00:31 (1 d, 3 h)
Engine
blob
Format
Raw Data
Handle
22711925
Attached To
rAKA akantu
dof_manager.cc
View Options
/**
* Copyright (©) 2015-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "dof_manager.hh"
#include "communicator.hh"
#include "mesh.hh"
#include "mesh_utils.hh"
#include "node_group.hh"
#include "node_synchronizer.hh"
#include "non_linear_solver.hh"
#include "periodic_node_synchronizer.hh"
#include "time_step_solver.hh"
/* -------------------------------------------------------------------------- */
#include <memory>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
DOFManager
::
DOFManager
(
const
ID
&
id
)
:
id
(
id
),
dofs_flag
(
0
,
1
,
std
::
string
(
id
+
":dofs_type"
)),
global_equation_number
(
0
,
1
,
"global_equation_number"
),
communicator
(
Communicator
::
getStaticCommunicator
())
{}
/* -------------------------------------------------------------------------- */
DOFManager
::
DOFManager
(
Mesh
&
mesh
,
const
ID
&
id
)
:
id
(
id
),
mesh
(
&
mesh
),
dofs_flag
(
0
,
1
,
std
::
string
(
id
+
":dofs_type"
)),
global_equation_number
(
0
,
1
,
"global_equation_number"
),
communicator
(
mesh
.
getCommunicator
())
{
this
->
mesh
->
registerEventHandler
(
*
this
,
_ehp_dof_manager
);
}
/* -------------------------------------------------------------------------- */
DOFManager
::~
DOFManager
()
=
default
;
/* -------------------------------------------------------------------------- */
std
::
vector
<
ID
>
DOFManager
::
getDOFIDs
()
const
{
std
::
vector
<
ID
>
keys
;
for
(
const
auto
&
dof_data
:
this
->
dofs
)
{
keys
.
push_back
(
dof_data
.
first
);
}
return
keys
;
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleElementalArrayLocalArray
(
const
Array
<
Real
>
&
elementary_vect
,
Array
<
Real
>
&
array_assembeled
,
ElementType
type
,
GhostType
ghost_type
,
Real
scale_factor
,
const
Array
<
Int
>
&
filter_elements
)
{
AKANTU_DEBUG_IN
();
Int
nb_element
;
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_degree_of_freedom
=
elementary_vect
.
getNbComponent
()
/
nb_nodes_per_element
;
const
Idx
*
filter_it
=
nullptr
;
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
filter_it
=
filter_elements
.
data
();
}
else
{
nb_element
=
this
->
mesh
->
getNbElement
(
type
,
ghost_type
);
}
AKANTU_DEBUG_ASSERT
(
elementary_vect
.
size
()
==
nb_element
,
"The vector elementary_vect("
<<
elementary_vect
.
getID
()
<<
") has not the good size."
);
const
auto
&
connectivity
=
this
->
mesh
->
getConnectivity
(
type
,
ghost_type
);
auto
elem_it
=
make_view
(
elementary_vect
,
nb_degree_of_freedom
,
nb_nodes_per_element
)
.
begin
();
auto
assemble_it
=
make_view
(
array_assembeled
,
nb_degree_of_freedom
).
begin
();
for
(
Int
el
=
0
;
el
<
nb_element
;
++
el
,
++
elem_it
)
{
auto
element
=
el
;
if
(
filter_it
!=
nullptr
)
{
element
=
*
filter_it
;
}
// const Vector<UInt> & conn = *conn_it;
const
auto
&
elemental_val
=
*
elem_it
;
for
(
Int
n
=
0
;
n
<
nb_nodes_per_element
;
++
n
)
{
auto
node
=
connectivity
(
element
,
n
);
auto
&&
assemble
=
assemble_it
[
node
];
assemble
+=
scale_factor
*
elemental_val
(
n
);
}
if
(
filter_it
!=
nullptr
)
{
++
filter_it
;
}
// else
// ++conn_it;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleElementalArrayToResidual
(
const
ID
&
dof_id
,
const
Array
<
Real
>
&
elementary_vect
,
ElementType
type
,
GhostType
ghost_type
,
Real
scale_factor
,
const
Array
<
Int
>
&
filter_elements
)
{
AKANTU_DEBUG_IN
();
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_degree_of_freedom
=
elementary_vect
.
getNbComponent
()
/
nb_nodes_per_element
;
Array
<
Real
>
array_localy_assembeled
(
this
->
mesh
->
getNbNodes
(),
nb_degree_of_freedom
);
array_localy_assembeled
.
zero
();
this
->
assembleElementalArrayLocalArray
(
elementary_vect
,
array_localy_assembeled
,
type
,
ghost_type
,
scale_factor
,
filter_elements
);
this
->
assembleToResidual
(
dof_id
,
array_localy_assembeled
,
1
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleElementalArrayToLumpedMatrix
(
const
ID
&
dof_id
,
const
Array
<
Real
>
&
elementary_vect
,
const
ID
&
lumped_mtx
,
ElementType
type
,
GhostType
ghost_type
,
Real
scale_factor
,
const
Array
<
Int
>
&
filter_elements
)
{
AKANTU_DEBUG_IN
();
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_degree_of_freedom
=
elementary_vect
.
getNbComponent
()
/
nb_nodes_per_element
;
Array
<
Real
>
array_localy_assembeled
(
this
->
mesh
->
getNbNodes
(),
nb_degree_of_freedom
);
array_localy_assembeled
.
zero
();
this
->
assembleElementalArrayLocalArray
(
elementary_vect
,
array_localy_assembeled
,
type
,
ghost_type
,
scale_factor
,
filter_elements
);
this
->
assembleToLumpedMatrix
(
dof_id
,
array_localy_assembeled
,
lumped_mtx
,
1
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleMatMulDOFsToResidual
(
const
ID
&
A_id
,
Real
scale_factor
)
{
for
(
auto
&
pair
:
this
->
dofs
)
{
const
auto
&
dof_id
=
pair
.
first
;
auto
&
dof_data
=
*
pair
.
second
;
this
->
assembleMatMulVectToResidual
(
dof_id
,
A_id
,
*
dof_data
.
dof
,
scale_factor
);
}
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
splitSolutionPerDOFs
()
{
for
(
auto
&&
data
:
this
->
dofs
)
{
auto
&
dof_data
=
*
data
.
second
;
dof_data
.
solution
.
resize
(
dof_data
.
dof
->
size
()
*
dof_data
.
dof
->
getNbComponent
());
this
->
getSolutionPerDOFs
(
data
.
first
,
dof_data
.
solution
);
}
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
getSolutionPerDOFs
(
const
ID
&
dof_id
,
Array
<
Real
>
&
solution_array
)
{
AKANTU_DEBUG_IN
();
this
->
getArrayPerDOFs
(
dof_id
,
this
->
getSolution
(),
solution_array
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
getLumpedMatrixPerDOFs
(
const
ID
&
dof_id
,
const
ID
&
lumped_mtx
,
Array
<
Real
>
&
lumped
)
{
AKANTU_DEBUG_IN
();
this
->
getArrayPerDOFs
(
dof_id
,
this
->
getLumpedMatrix
(
lumped_mtx
),
lumped
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleToResidual
(
const
ID
&
dof_id
,
Array
<
Real
>
&
array_to_assemble
,
Real
scale_factor
)
{
AKANTU_DEBUG_IN
();
// this->makeConsistentForPeriodicity(dof_id, array_to_assemble);
this
->
assembleToGlobalArray
(
dof_id
,
array_to_assemble
,
this
->
getResidual
(),
scale_factor
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleToLumpedMatrix
(
const
ID
&
dof_id
,
Array
<
Real
>
&
array_to_assemble
,
const
ID
&
lumped_mtx
,
Real
scale_factor
)
{
AKANTU_DEBUG_IN
();
// this->makeConsistentForPeriodicity(dof_id, array_to_assemble);
auto
&
lumped
=
this
->
getLumpedMatrix
(
lumped_mtx
);
this
->
assembleToGlobalArray
(
dof_id
,
array_to_assemble
,
lumped
,
scale_factor
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
DOFManager
::
DOFData
::
DOFData
(
const
ID
&
dof_id
)
:
support_type
(
_dst_generic
),
group_support
(
"__mesh__"
),
solution
(
0
,
1
,
dof_id
+
":solution"
),
local_equation_number
(
0
,
1
,
dof_id
+
":local_equation_number"
),
associated_nodes
(
0
,
1
,
dof_id
+
"associated_nodes"
)
{}
/* -------------------------------------------------------------------------- */
DOFManager
::
DOFData
::~
DOFData
()
=
default
;
/* -------------------------------------------------------------------------- */
template
<
typename
Func
>
auto
DOFManager
::
countDOFsForNodes
(
const
DOFData
&
dof_data
,
Int
nb_nodes
,
Func
&&
getNode
)
{
auto
nb_local_dofs
=
nb_nodes
;
decltype
(
nb_local_dofs
)
nb_pure_local
=
0
;
for
(
auto
n
:
arange
(
nb_nodes
))
{
UInt
node
=
getNode
(
n
);
// http://www.open-std.org/jtc1/sc22/open/n2356/conv.html
// bool are by convention casted to 0 and 1 when promoted to int
nb_pure_local
+=
this
->
mesh
->
isLocalOrMasterNode
(
node
);
nb_local_dofs
-=
this
->
mesh
->
isPeriodicSlave
(
node
);
}
const
auto
&
dofs_array
=
*
dof_data
.
dof
;
nb_pure_local
*=
dofs_array
.
getNbComponent
();
nb_local_dofs
*=
dofs_array
.
getNbComponent
();
return
std
::
make_pair
(
nb_local_dofs
,
nb_pure_local
);
}
/* -------------------------------------------------------------------------- */
auto
DOFManager
::
getNewDOFDataInternal
(
const
ID
&
dof_id
)
->
DOFData
&
{
auto
it
=
this
->
dofs
.
find
(
dof_id
);
if
(
it
!=
this
->
dofs
.
end
())
{
AKANTU_EXCEPTION
(
"This dof array has already been registered"
);
}
std
::
unique_ptr
<
DOFData
>
dof_data_ptr
=
this
->
getNewDOFData
(
dof_id
);
DOFData
&
dof_data
=
*
dof_data_ptr
;
this
->
dofs
[
dof_id
]
=
std
::
move
(
dof_data_ptr
);
return
dof_data
;
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
registerDOFs
(
const
ID
&
dof_id
,
Array
<
Real
>
&
dofs_array
,
DOFSupportType
support_type
)
{
auto
&
dofs_storage
=
this
->
getNewDOFDataInternal
(
dof_id
);
dofs_storage
.
support_type
=
support_type
;
this
->
registerDOFsInternal
(
dof_id
,
dofs_array
);
resizeGlobalArrays
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
registerDOFs
(
const
ID
&
dof_id
,
Array
<
Real
>
&
dofs_array
,
const
ID
&
support_group
)
{
auto
&
dofs_storage
=
this
->
getNewDOFDataInternal
(
dof_id
);
dofs_storage
.
support_type
=
_dst_nodal
;
dofs_storage
.
group_support
=
support_group
;
this
->
registerDOFsInternal
(
dof_id
,
dofs_array
);
resizeGlobalArrays
();
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
Int
,
Int
,
Int
>
DOFManager
::
registerDOFsInternal
(
const
ID
&
dof_id
,
Array
<
Real
>
&
dofs_array
)
{
DOFData
&
dof_data
=
this
->
getDOFData
(
dof_id
);
dof_data
.
dof
=
&
dofs_array
;
Int
nb_local_dofs
=
0
;
Int
nb_pure_local
=
0
;
const
auto
&
support_type
=
dof_data
.
support_type
;
switch
(
support_type
)
{
case
_dst_nodal:
{
const
auto
&
group
=
dof_data
.
group_support
;
std
::
function
<
Idx
(
Idx
)
>
getNode
;
if
(
group
==
"__mesh__"
)
{
AKANTU_DEBUG_ASSERT
(
dofs_array
.
size
()
==
this
->
mesh
->
getNbNodes
(),
"The array of dof is too short to be associated to nodes."
);
std
::
tie
(
nb_local_dofs
,
nb_pure_local
)
=
countDOFsForNodes
(
dof_data
,
this
->
mesh
->
getNbNodes
(),
[](
auto
&&
n
)
{
return
n
;
});
}
else
{
const
auto
&
node_group
=
this
->
mesh
->
getElementGroup
(
group
).
getNodeGroup
().
getNodes
();
AKANTU_DEBUG_ASSERT
(
dofs_array
.
size
()
==
node_group
.
size
(),
"The array of dof is too shot to be associated to nodes."
);
std
::
tie
(
nb_local_dofs
,
nb_pure_local
)
=
countDOFsForNodes
(
dof_data
,
node_group
.
size
(),
[
&
node_group
](
auto
&&
n
)
{
return
node_group
(
n
);
});
}
break
;
}
case
_dst_generic:
{
nb_local_dofs
=
nb_pure_local
=
dofs_array
.
size
()
*
dofs_array
.
getNbComponent
();
break
;
}
default
:
{
AKANTU_EXCEPTION
(
"This type of dofs is not handled yet."
);
}
}
dof_data
.
local_nb_dofs
=
nb_local_dofs
;
dof_data
.
pure_local_nb_dofs
=
nb_pure_local
;
dof_data
.
ghosts_nb_dofs
=
nb_local_dofs
-
nb_pure_local
;
this
->
pure_local_system_size
+=
nb_pure_local
;
this
->
local_system_size
+=
nb_local_dofs
;
auto
nb_total_pure_local
=
nb_pure_local
;
communicator
.
allReduce
(
nb_total_pure_local
,
SynchronizerOperation
::
_sum
);
this
->
system_size
+=
nb_total_pure_local
;
// updating the dofs data after counting is finished
switch
(
support_type
)
{
case
_dst_nodal:
{
const
auto
&
group
=
dof_data
.
group_support
;
if
(
group
!=
"__mesh__"
)
{
auto
&
support_nodes
=
this
->
mesh
->
getElementGroup
(
group
).
getNodeGroup
().
getNodes
();
this
->
updateDOFsData
(
dof_data
,
nb_local_dofs
,
nb_pure_local
,
support_nodes
.
size
(),
[
&
support_nodes
](
Idx
node
)
->
Idx
{
return
support_nodes
[
node
];
});
}
else
{
this
->
updateDOFsData
(
dof_data
,
nb_local_dofs
,
nb_pure_local
,
mesh
->
getNbNodes
(),
[](
Idx
node
)
->
Idx
{
return
node
;
});
}
break
;
}
case
_dst_generic:
{
this
->
updateDOFsData
(
dof_data
,
nb_local_dofs
,
nb_pure_local
);
break
;
}
}
return
std
::
make_tuple
(
nb_local_dofs
,
nb_pure_local
,
nb_total_pure_local
);
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
registerDOFsPrevious
(
const
ID
&
dof_id
,
Array
<
Real
>
&
array
)
{
DOFData
&
dof
=
this
->
getDOFData
(
dof_id
);
if
(
dof
.
previous
!=
nullptr
)
{
AKANTU_EXCEPTION
(
"The previous dofs array for "
<<
dof_id
<<
" has already been registered"
);
}
dof
.
previous
=
&
array
;
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
registerDOFsIncrement
(
const
ID
&
dof_id
,
Array
<
Real
>
&
array
)
{
DOFData
&
dof
=
this
->
getDOFData
(
dof_id
);
if
(
dof
.
increment
!=
nullptr
)
{
AKANTU_EXCEPTION
(
"The dofs increment array for "
<<
dof_id
<<
" has already been registered"
);
}
dof
.
increment
=
&
array
;
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
registerDOFsDerivative
(
const
ID
&
dof_id
,
Int
order
,
Array
<
Real
>
&
dofs_derivative
)
{
auto
&
dof
=
this
->
getDOFData
(
dof_id
);
auto
&
derivatives
=
dof
.
dof_derivatives
;
if
(
Int
(
derivatives
.
size
())
<
order
)
{
derivatives
.
resize
(
order
,
nullptr
);
}
else
{
if
(
derivatives
[
order
-
1
]
!=
nullptr
)
{
AKANTU_EXCEPTION
(
"The dof derivatives of order "
<<
order
<<
" already been registered for this dof ("
<<
dof_id
<<
")"
);
}
}
derivatives
[
order
-
1
]
=
&
dofs_derivative
;
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
registerBlockedDOFs
(
const
ID
&
dof_id
,
Array
<
bool
>
&
blocked_dofs
)
{
auto
&
dof
=
this
->
getDOFData
(
dof_id
);
if
(
dof
.
blocked_dofs
!=
nullptr
)
{
AKANTU_EXCEPTION
(
"The blocked dofs array for "
<<
dof_id
<<
" has already been registered"
);
}
dof
.
blocked_dofs
=
&
blocked_dofs
;
}
/* -------------------------------------------------------------------------- */
SparseMatrix
&
DOFManager
::
registerSparseMatrix
(
const
ID
&
matrix_id
,
std
::
unique_ptr
<
SparseMatrix
>
&
matrix
)
{
auto
it
=
this
->
matrices
.
find
(
matrix_id
);
if
(
it
!=
this
->
matrices
.
end
())
{
AKANTU_EXCEPTION
(
"The matrix "
<<
matrix_id
<<
" already exists in "
<<
this
->
id
);
}
auto
&
ret
=
*
matrix
;
this
->
matrices
[
matrix_id
]
=
std
::
move
(
matrix
);
return
ret
;
}
/* -------------------------------------------------------------------------- */
/// Get an instance of a new SparseMatrix
SolverVector
&
DOFManager
::
registerLumpedMatrix
(
const
ID
&
matrix_id
,
std
::
unique_ptr
<
SolverVector
>
&
matrix
)
{
auto
it
=
this
->
lumped_matrices
.
find
(
matrix_id
);
if
(
it
!=
this
->
lumped_matrices
.
end
())
{
AKANTU_EXCEPTION
(
"The lumped matrix "
<<
matrix_id
<<
" already exists in "
<<
this
->
id
);
}
auto
&
ret
=
*
matrix
;
this
->
lumped_matrices
[
matrix_id
]
=
std
::
move
(
matrix
);
ret
.
resize
();
return
ret
;
}
/* -------------------------------------------------------------------------- */
NonLinearSolver
&
DOFManager
::
registerNonLinearSolver
(
const
ID
&
non_linear_solver_id
,
std
::
unique_ptr
<
NonLinearSolver
>
&
non_linear_solver
)
{
NonLinearSolversMap
::
const_iterator
it
=
this
->
non_linear_solvers
.
find
(
non_linear_solver_id
);
if
(
it
!=
this
->
non_linear_solvers
.
end
())
{
AKANTU_EXCEPTION
(
"The non linear solver "
<<
non_linear_solver_id
<<
" already exists in "
<<
this
->
id
);
}
NonLinearSolver
&
ret
=
*
non_linear_solver
;
this
->
non_linear_solvers
[
non_linear_solver_id
]
=
std
::
move
(
non_linear_solver
);
return
ret
;
}
/* -------------------------------------------------------------------------- */
TimeStepSolver
&
DOFManager
::
registerTimeStepSolver
(
const
ID
&
time_step_solver_id
,
std
::
unique_ptr
<
TimeStepSolver
>
&
time_step_solver
)
{
TimeStepSolversMap
::
const_iterator
it
=
this
->
time_step_solvers
.
find
(
time_step_solver_id
);
if
(
it
!=
this
->
time_step_solvers
.
end
())
{
AKANTU_EXCEPTION
(
"The non linear solver "
<<
time_step_solver_id
<<
" already exists in "
<<
this
->
id
);
}
TimeStepSolver
&
ret
=
*
time_step_solver
;
this
->
time_step_solvers
[
time_step_solver_id
]
=
std
::
move
(
time_step_solver
);
return
ret
;
}
/* -------------------------------------------------------------------------- */
SparseMatrix
&
DOFManager
::
getMatrix
(
const
ID
&
id
)
{
ID
matrix_id
=
this
->
id
+
":mtx:"
+
id
;
SparseMatricesMap
::
const_iterator
it
=
this
->
matrices
.
find
(
matrix_id
);
if
(
it
==
this
->
matrices
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The matrix "
<<
matrix_id
<<
" does not exists in "
<<
this
->
id
);
}
return
*
(
it
->
second
);
}
/* -------------------------------------------------------------------------- */
bool
DOFManager
::
hasMatrix
(
const
ID
&
id
)
const
{
ID
mtx_id
=
this
->
id
+
":mtx:"
+
id
;
auto
it
=
this
->
matrices
.
find
(
mtx_id
);
return
it
!=
this
->
matrices
.
end
();
}
/* -------------------------------------------------------------------------- */
SolverVector
&
DOFManager
::
getLumpedMatrix
(
const
ID
&
id
)
{
ID
matrix_id
=
this
->
id
+
":lumped_mtx:"
+
id
;
LumpedMatricesMap
::
const_iterator
it
=
this
->
lumped_matrices
.
find
(
matrix_id
);
if
(
it
==
this
->
lumped_matrices
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The lumped matrix "
<<
matrix_id
<<
" does not exists in "
<<
this
->
id
);
}
return
*
(
it
->
second
);
}
/* -------------------------------------------------------------------------- */
const
SolverVector
&
DOFManager
::
getLumpedMatrix
(
const
ID
&
id
)
const
{
ID
matrix_id
=
this
->
id
+
":lumped_mtx:"
+
id
;
auto
it
=
this
->
lumped_matrices
.
find
(
matrix_id
);
if
(
it
==
this
->
lumped_matrices
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The lumped matrix "
<<
matrix_id
<<
" does not exists in "
<<
this
->
id
);
}
return
*
(
it
->
second
);
}
/* -------------------------------------------------------------------------- */
bool
DOFManager
::
hasLumpedMatrix
(
const
ID
&
id
)
const
{
ID
mtx_id
=
this
->
id
+
":lumped_mtx:"
+
id
;
auto
it
=
this
->
lumped_matrices
.
find
(
mtx_id
);
return
it
!=
this
->
lumped_matrices
.
end
();
}
/* -------------------------------------------------------------------------- */
NonLinearSolver
&
DOFManager
::
getNonLinearSolver
(
const
ID
&
id
)
{
ID
non_linear_solver_id
=
this
->
id
+
":nls:"
+
id
;
NonLinearSolversMap
::
const_iterator
it
=
this
->
non_linear_solvers
.
find
(
non_linear_solver_id
);
if
(
it
==
this
->
non_linear_solvers
.
end
())
{
AKANTU_EXCEPTION
(
"The non linear solver "
<<
non_linear_solver_id
<<
" does not exists in "
<<
this
->
id
);
}
return
*
(
it
->
second
);
}
/* -------------------------------------------------------------------------- */
bool
DOFManager
::
hasNonLinearSolver
(
const
ID
&
id
)
const
{
ID
solver_id
=
this
->
id
+
":nls:"
+
id
;
auto
it
=
this
->
non_linear_solvers
.
find
(
solver_id
);
return
it
!=
this
->
non_linear_solvers
.
end
();
}
/* -------------------------------------------------------------------------- */
TimeStepSolver
&
DOFManager
::
getTimeStepSolver
(
const
ID
&
id
)
{
ID
time_step_solver_id
=
this
->
id
+
":tss:"
+
id
;
TimeStepSolversMap
::
const_iterator
it
=
this
->
time_step_solvers
.
find
(
time_step_solver_id
);
if
(
it
==
this
->
time_step_solvers
.
end
())
{
AKANTU_EXCEPTION
(
"The non linear solver "
<<
time_step_solver_id
<<
" does not exists in "
<<
this
->
id
);
}
return
*
(
it
->
second
);
}
/* -------------------------------------------------------------------------- */
bool
DOFManager
::
hasTimeStepSolver
(
const
ID
&
solver_id
)
const
{
ID
time_step_solver_id
=
this
->
id
+
":tss:"
+
solver_id
;
auto
it
=
this
->
time_step_solvers
.
find
(
time_step_solver_id
);
return
it
!=
this
->
time_step_solvers
.
end
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
savePreviousDOFs
(
const
ID
&
dofs_id
)
{
this
->
getPreviousDOFs
(
dofs_id
).
copy
(
this
->
getDOFs
(
dofs_id
));
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
zeroResidual
()
{
this
->
residual
->
zero
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
zeroMatrix
(
const
ID
&
mtx
)
{
this
->
getMatrix
(
mtx
).
zero
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
zeroLumpedMatrix
(
const
ID
&
mtx
)
{
this
->
getLumpedMatrix
(
mtx
).
zero
();
}
/* -------------------------------------------------------------------------- */
/* Mesh Events */
/* -------------------------------------------------------------------------- */
std
::
pair
<
Int
,
Int
>
DOFManager
::
updateNodalDOFs
(
const
ID
&
dof_id
,
const
Array
<
Idx
>
&
nodes_list
)
{
auto
&
dof_data
=
this
->
getDOFData
(
dof_id
);
Int
nb_new_local_dofs
,
nb_new_pure_local
;
std
::
tie
(
nb_new_local_dofs
,
nb_new_pure_local
)
=
countDOFsForNodes
(
dof_data
,
nodes_list
.
size
(),
[
&
nodes_list
](
auto
&&
n
)
{
return
nodes_list
(
n
);
});
this
->
pure_local_system_size
+=
nb_new_pure_local
;
this
->
local_system_size
+=
nb_new_local_dofs
;
auto
nb_new_global
=
nb_new_pure_local
;
communicator
.
allReduce
(
nb_new_global
,
SynchronizerOperation
::
_sum
);
this
->
system_size
+=
nb_new_global
;
dof_data
.
solution
.
resize
(
local_system_size
);
updateDOFsData
(
dof_data
,
nb_new_local_dofs
,
nb_new_pure_local
,
nodes_list
.
size
(),
[
&
nodes_list
](
auto
pos
)
->
UInt
{
return
nodes_list
[
pos
];
});
return
std
::
make_pair
(
nb_new_local_dofs
,
nb_new_pure_local
);
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
resizeGlobalArrays
()
{
// resize all relevant arrays
this
->
residual
->
resize
();
this
->
solution
->
resize
();
this
->
data_cache
->
resize
();
for
(
auto
&
lumped_matrix
:
lumped_matrices
)
{
lumped_matrix
.
second
->
resize
();
}
for
(
auto
&
matrix
:
matrices
)
{
matrix
.
second
->
clearProfile
();
}
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
onNodesAdded
(
const
Array
<
Idx
>
&
nodes_list
,
const
NewNodesEvent
&
)
{
for
(
auto
&
pair
:
this
->
dofs
)
{
const
auto
&
dof_id
=
pair
.
first
;
auto
&
dof_data
=
this
->
getDOFData
(
dof_id
);
if
(
dof_data
.
support_type
!=
_dst_nodal
)
{
continue
;
}
const
auto
&
group
=
dof_data
.
group_support
;
if
(
group
==
"__mesh__"
)
{
this
->
updateNodalDOFs
(
dof_id
,
nodes_list
);
}
else
{
const
auto
&
node_group
=
this
->
mesh
->
getElementGroup
(
group
).
getNodeGroup
();
Array
<
Idx
>
new_nodes_list
;
for
(
const
auto
&
node
:
nodes_list
)
{
if
(
node_group
.
find
(
node
)
!=
Int
(
-
1
))
{
new_nodes_list
.
push_back
(
node
);
}
}
this
->
updateNodalDOFs
(
dof_id
,
new_nodes_list
);
}
}
this
->
resizeGlobalArrays
();
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
onMeshIsDistributed
(
const
MeshIsDistributedEvent
&
/*event*/
)
{
AKANTU_DEBUG_ASSERT
(
this
->
mesh
!=
nullptr
,
"The `Mesh` pointer is not set."
);
// check if the distributed state of the residual and the mesh are the same.
if
(
this
->
mesh
->
isDistributed
()
!=
this
->
residual
->
isDistributed
())
{
// TODO: Allow to reallocate the internals, in that case one could actually
// react on that event.
auto
is_or_is_not
=
[](
bool
q
)
{
return
((
q
)
?
std
::
string
(
"is"
)
:
std
::
string
(
"is not"
));
};
AKANTU_EXCEPTION
(
"There is an inconsistency about the distribution state "
"of the `DOFManager`."
" It seams that the `Mesh` "
<<
is_or_is_not
(
this
->
mesh
->
isDistributed
())
<<
" distributed, but the `DOFManager`'s residual "
<<
is_or_is_not
(
this
->
residual
->
isDistributed
())
<<
", which is of type "
<<
debug
::
demangle
(
typeid
(
this
->
residual
).
name
())
<<
"."
);
}
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
class
GlobalDOFInfoDataAccessor
:
public
DataAccessor
<
Idx
>
{
public
:
GlobalDOFInfoDataAccessor
(
DOFManager
::
DOFData
&
dof_data
,
DOFManager
&
dof_manager
)
:
dof_data
(
dof_data
),
dof_manager
(
dof_manager
)
{
for
(
auto
&&
pair
:
zip
(
dof_data
.
local_equation_number
,
dof_data
.
associated_nodes
))
{
Idx
node
;
Idx
dof
;
std
::
tie
(
dof
,
node
)
=
pair
;
dofs_per_node
[
node
].
push_back
(
dof
);
}
}
Int
getNbData
(
const
Array
<
Idx
>
&
nodes
,
const
SynchronizationTag
&
tag
)
const
override
{
if
(
tag
==
SynchronizationTag
::
_ask_nodes
or
tag
==
SynchronizationTag
::
_giu_global_conn
)
{
return
nodes
.
size
()
*
dof_data
.
dof
->
getNbComponent
()
*
sizeof
(
Idx
);
}
return
0
;
}
void
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Idx
>
&
nodes
,
const
SynchronizationTag
&
tag
)
const
override
{
if
(
tag
==
SynchronizationTag
::
_ask_nodes
or
tag
==
SynchronizationTag
::
_giu_global_conn
)
{
for
(
const
auto
&
node
:
nodes
)
{
const
auto
&
dofs
=
dofs_per_node
.
at
(
node
);
for
(
const
auto
&
dof
:
dofs
)
{
buffer
<<
dof_manager
.
global_equation_number
(
dof
);
}
}
}
}
void
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Idx
>
&
nodes
,
const
SynchronizationTag
&
tag
)
override
{
if
(
tag
==
SynchronizationTag
::
_ask_nodes
or
tag
==
SynchronizationTag
::
_giu_global_conn
)
{
for
(
const
auto
&
node
:
nodes
)
{
const
auto
&
dofs
=
dofs_per_node
[
node
];
for
(
const
auto
&
dof
:
dofs
)
{
Idx
global_dof
;
buffer
>>
global_dof
;
AKANTU_DEBUG_ASSERT
(
(
dof_manager
.
global_equation_number
(
dof
)
==
-
1
or
dof_manager
.
global_equation_number
(
dof
)
==
global_dof
),
"This dof already had a global_dof_id which is different from "
"the received one. "
<<
dof_manager
.
global_equation_number
(
dof
)
<<
" != "
<<
global_dof
);
dof_manager
.
global_equation_number
(
dof
)
=
global_dof
;
dof_manager
.
global_to_local_mapping
[
global_dof
]
=
dof
;
}
}
}
}
protected
:
std
::
unordered_map
<
Idx
,
std
::
vector
<
Idx
>>
dofs_per_node
;
DOFManager
::
DOFData
&
dof_data
;
DOFManager
&
dof_manager
;
};
/* -------------------------------------------------------------------------- */
auto
DOFManager
::
computeFirstDOFIDs
(
Int
nb_new_local_dofs
,
Int
nb_new_pure_local
)
{
// determine the first local/global dof id to use
Int
offset
=
0
;
this
->
communicator
.
exclusiveScan
(
nb_new_pure_local
,
offset
);
auto
first_global_dof_id
=
this
->
first_global_dof_id
+
offset
;
auto
first_local_dof_id
=
this
->
local_system_size
-
nb_new_local_dofs
;
offset
=
nb_new_pure_local
;
this
->
communicator
.
allReduce
(
offset
);
this
->
first_global_dof_id
+=
offset
;
return
std
::
make_pair
(
first_local_dof_id
,
first_global_dof_id
);
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
updateDOFsData
(
DOFData
&
dof_data
,
Int
nb_new_local_dofs
,
Int
nb_new_pure_local
,
Int
nb_node
,
const
std
::
function
<
Idx
(
Idx
)
>
&
getNode
)
{
auto
nb_local_dofs_added
=
nb_node
*
dof_data
.
dof
->
getNbComponent
();
auto
first_dof_pos
=
dof_data
.
local_equation_number
.
size
();
dof_data
.
local_equation_number
.
reserve
(
dof_data
.
local_equation_number
.
size
()
+
nb_local_dofs_added
);
dof_data
.
associated_nodes
.
reserve
(
dof_data
.
associated_nodes
.
size
()
+
nb_local_dofs_added
);
this
->
dofs_flag
.
resize
(
this
->
local_system_size
,
NodeFlag
::
_normal
);
this
->
global_equation_number
.
resize
(
this
->
local_system_size
,
-
1
);
std
::
unordered_map
<
std
::
pair
<
Idx
,
Idx
>
,
Idx
>
masters_dofs
;
// update per dof info
Int
local_eq_num
,
first_global_dof_id
;
std
::
tie
(
local_eq_num
,
first_global_dof_id
)
=
computeFirstDOFIDs
(
nb_new_local_dofs
,
nb_new_pure_local
);
for
(
auto
d
:
arange
(
nb_local_dofs_added
))
{
auto
node
=
getNode
(
d
/
dof_data
.
dof
->
getNbComponent
());
auto
dof_flag
=
this
->
mesh
->
getNodeFlag
(
node
);
dof_data
.
associated_nodes
.
push_back
(
node
);
auto
is_local_dof
=
this
->
mesh
->
isLocalOrMasterNode
(
node
);
auto
is_periodic_slave
=
this
->
mesh
->
isPeriodicSlave
(
node
);
auto
is_periodic_master
=
this
->
mesh
->
isPeriodicMaster
(
node
);
if
(
is_periodic_slave
)
{
dof_data
.
local_equation_number
.
push_back
(
-
1
);
continue
;
}
// update equation numbers
this
->
dofs_flag
(
local_eq_num
)
=
dof_flag
;
dof_data
.
local_equation_number
.
push_back
(
local_eq_num
);
if
(
is_local_dof
)
{
this
->
global_equation_number
(
local_eq_num
)
=
first_global_dof_id
;
this
->
global_to_local_mapping
[
first_global_dof_id
]
=
local_eq_num
;
++
first_global_dof_id
;
}
else
{
this
->
global_equation_number
(
local_eq_num
)
=
-
1
;
}
if
(
is_periodic_master
)
{
auto
node
=
getNode
(
d
/
dof_data
.
dof
->
getNbComponent
());
auto
dof
=
d
%
dof_data
.
dof
->
getNbComponent
();
masters_dofs
.
insert
(
std
::
make_pair
(
std
::
make_pair
(
node
,
dof
),
local_eq_num
));
}
++
local_eq_num
;
}
// correct periodic slave equation numbers
if
(
this
->
mesh
->
isPeriodic
())
{
auto
assoc_begin
=
dof_data
.
associated_nodes
.
begin
();
for
(
auto
d
:
arange
(
nb_local_dofs_added
))
{
auto
node
=
dof_data
.
associated_nodes
(
first_dof_pos
+
d
);
if
(
not
this
->
mesh
->
isPeriodicSlave
(
node
))
{
continue
;
}
auto
master_node
=
this
->
mesh
->
getPeriodicMaster
(
node
);
auto
dof
=
d
%
dof_data
.
dof
->
getNbComponent
();
dof_data
.
local_equation_number
(
first_dof_pos
+
d
)
=
masters_dofs
[
std
::
make_pair
(
master_node
,
dof
)];
}
}
// synchronize the global numbering for slaves nodes
if
(
this
->
mesh
->
isDistributed
())
{
GlobalDOFInfoDataAccessor
data_accessor
(
dof_data
,
*
this
);
if
(
this
->
mesh
->
isPeriodic
())
{
mesh
->
getPeriodicNodeSynchronizer
().
synchronizeOnce
(
data_accessor
,
SynchronizationTag
::
_giu_global_conn
);
}
auto
&
node_synchronizer
=
this
->
mesh
->
getNodeSynchronizer
();
node_synchronizer
.
synchronizeOnce
(
data_accessor
,
SynchronizationTag
::
_ask_nodes
);
}
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
updateDOFsData
(
DOFData
&
dof_data
,
Int
nb_new_local_dofs
,
Int
nb_new_pure_local
)
{
dof_data
.
local_equation_number
.
reserve
(
dof_data
.
local_equation_number
.
size
()
+
nb_new_local_dofs
);
Int
first_local_dof_id
,
first_global_dof_id
;
std
::
tie
(
first_local_dof_id
,
first_global_dof_id
)
=
computeFirstDOFIDs
(
nb_new_local_dofs
,
nb_new_pure_local
);
this
->
dofs_flag
.
resize
(
this
->
local_system_size
,
NodeFlag
::
_normal
);
this
->
global_equation_number
.
resize
(
this
->
local_system_size
,
-
1
);
// update per dof info
for
(
auto
_
[[
gnu
::
unused
]]
:
arange
(
nb_new_local_dofs
))
{
// update equation numbers
this
->
dofs_flag
(
first_local_dof_id
)
=
NodeFlag
::
_normal
;
dof_data
.
local_equation_number
.
push_back
(
first_local_dof_id
);
this
->
global_equation_number
(
first_local_dof_id
)
=
first_global_dof_id
;
this
->
global_to_local_mapping
[
first_global_dof_id
]
=
first_local_dof_id
;
++
first_global_dof_id
;
++
first_local_dof_id
;
}
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
onNodesRemoved
(
const
Array
<
Idx
>
&
,
const
Array
<
Idx
>
&
,
const
RemovedNodesEvent
&
)
{}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
onElementsAdded
(
const
Array
<
Element
>
&
/*unused*/
,
const
NewElementsEvent
&
/*unused*/
)
{}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
onElementsRemoved
(
const
Array
<
Element
>
&
,
const
ElementTypeMapArray
<
Idx
>
&
,
const
RemovedElementsEvent
&
)
{}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
onElementsChanged
(
const
Array
<
Element
>
&
,
const
Array
<
Element
>
&
,
const
ElementTypeMapArray
<
Idx
>
&
,
const
ChangedElementsEvent
&
)
{}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
updateGlobalBlockedDofs
()
{
this
->
previous_global_blocked_dofs
.
copy
(
this
->
global_blocked_dofs
);
this
->
global_blocked_dofs
.
reserve
(
this
->
local_system_size
,
0
);
this
->
previous_global_blocked_dofs_release
=
this
->
global_blocked_dofs_release
;
for
(
auto
&
pair
:
dofs
)
{
if
(
not
this
->
hasBlockedDOFs
(
pair
.
first
))
{
continue
;
}
DOFData
&
dof_data
=
*
pair
.
second
;
for
(
auto
&&
data
:
zip
(
dof_data
.
getLocalEquationsNumbers
(),
make_view
(
*
dof_data
.
blocked_dofs
)))
{
const
auto
&
dof
=
std
::
get
<
0
>
(
data
);
const
auto
&
is_blocked
=
std
::
get
<
1
>
(
data
);
if
(
is_blocked
)
{
this
->
global_blocked_dofs
.
push_back
(
dof
);
}
}
}
std
::
sort
(
this
->
global_blocked_dofs
.
begin
(),
this
->
global_blocked_dofs
.
end
());
auto
last
=
std
::
unique
(
this
->
global_blocked_dofs
.
begin
(),
this
->
global_blocked_dofs
.
end
());
this
->
global_blocked_dofs
.
resize
(
last
-
this
->
global_blocked_dofs
.
begin
());
auto
are_equal
=
global_blocked_dofs
.
size
()
==
previous_global_blocked_dofs
.
size
()
and
std
::
equal
(
global_blocked_dofs
.
begin
(),
global_blocked_dofs
.
end
(),
previous_global_blocked_dofs
.
begin
());
if
(
not
are_equal
)
{
++
this
->
global_blocked_dofs_release
;
}
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
applyBoundary
(
const
ID
&
matrix_id
)
{
auto
&
J
=
this
->
getMatrix
(
matrix_id
);
if
(
this
->
jacobian_release
==
J
.
getRelease
())
{
if
(
this
->
hasBlockedDOFsChanged
())
{
J
.
applyBoundary
();
}
previous_global_blocked_dofs
.
copy
(
global_blocked_dofs
);
}
else
{
J
.
applyBoundary
();
}
this
->
jacobian_release
=
J
.
getRelease
();
this
->
previous_global_blocked_dofs_release
=
this
->
global_blocked_dofs_release
;
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleMatMulVectToGlobalArray
(
const
ID
&
dof_id
,
const
ID
&
A_id
,
const
Array
<
Real
>
&
x
,
SolverVector
&
array
,
Real
scale_factor
)
{
auto
&
A
=
this
->
getMatrix
(
A_id
);
data_cache
->
resize
();
data_cache
->
zero
();
this
->
assembleToGlobalArray
(
dof_id
,
x
,
*
data_cache
,
1.
);
A
.
matVecMul
(
*
data_cache
,
array
,
scale_factor
,
1.
);
}
/* -------------------------------------------------------------------------- */
void
DOFManager
::
assembleMatMulVectToResidual
(
const
ID
&
dof_id
,
const
ID
&
A_id
,
const
Array
<
Real
>
&
x
,
Real
scale_factor
)
{
assembleMatMulVectToGlobalArray
(
dof_id
,
A_id
,
x
,
*
residual
,
scale_factor
);
}
}
// namespace akantu
Event Timeline
Log In to Comment