Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93997727
Step1.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Dec 3, 03:18
Size
2 KB
Mime Type
text/x-python
Expires
Thu, Dec 5, 03:18 (1 d, 4 h)
Engine
blob
Format
Raw Data
Handle
22698418
Attached To
rMARAFFO Master-cycle
Step1.py
View Options
import
matplotlib.pyplot
as
plt
from
MD
import
*
import
sys
# Step 1.1
# Create a crystalline fcc structure
#############################################################
Ncells
=
6
# Number of unit cells along each axis
lat_par
=
1.7048
# Lattice parameter
L
=
lat_par
*
Ncells
# Size of the simulation box
N
=
4
*
Ncells
**
3
# Number of atoms in the simulation box
# Generate fcc structure
pos
,
vel
=
crystal
(
Ncells
,
lat_par
)
# Write positions and velocities into a file
dump_pos_vel
(
'sample10.dat'
,
pos
,
vel
,
N
,
L
)
# Step 1.2
# Run a test simulation
#############################################################
nsteps
=
200
# Number of steps
dt
=
0.003
# Integration step
# Read crystal shape, positions and velocities from a file
N
,
L
,
pos
,
vel
=
read_pos_vel
(
'sample10.dat'
)
# Perform simulation and collect the output into a dictionary
output
=
run_NVE
(
pos
,
vel
,
L
,
nsteps
,
N
,
dt
)
# Write positions and velocities into a file
dump_pos_vel
(
'sample11.dat'
,
output
[
'pos'
],
output
[
'vel'
],
N
,
L
)
# Step 1.3
# Compute velocities
#############################################################
nsteps
=
200
dt
=
0.0046
# Perform simulation starting from the output of a previous run
output
=
run_NVE
(
output
[
'pos'
],
output
[
'vel'
],
L
,
nsteps
,
N
,
dt
)
# Step 1.4
# Change T
#############################################################
nsteps
=
200
dt
=
0.0046
T
=
0.7867
# requested temperature
# Change T
output
=
run_NVE
(
output
[
'pos'
],
output
[
'vel'
],
L
,
nsteps
,
N
,
dt
,
T
)
# Track energy
NVT_Energy
=
output
[
'EnKin'
]
+
output
[
'EnPot'
]
NVT_steps
=
output
[
'nsteps'
]
# Plot temperature vs step
plt
.
figure
()
plt
.
plot
(
output
[
'nsteps'
],
output
[
'EnKin'
]
*
2
/
3
)
plt
.
ylabel
(
r'$T$ [L.J.]'
)
plt
.
xlabel
(
r'$t$'
)
#plt.show()
# Equilibrate
#############################################################
nsteps
=
800
dt
=
0.0046
# Equilibrate
output
=
run_NVE
(
output
[
'pos'
],
output
[
'vel'
],
L
,
nsteps
,
N
,
dt
)
# Write positions and velocities into a file
dump_pos_vel
(
'sampleT94.4.dat'
,
output
[
'pos'
],
output
[
'vel'
],
N
,
L
)
# Plot total energy vs step
plt
.
figure
()
plt
.
plot
(
output
[
'nsteps'
],
output
[
'EnKin'
]
+
output
[
'EnPot'
],
label
=
'Equilibrate'
)
plt
.
plot
(
NVT_steps
,
NVT_Energy
,
label
=
'Fixed temperature'
)
plt
.
ylabel
(
'Total energy [L.J.]'
)
plt
.
xlabel
(
r'$t$'
)
plt
.
legend
()
plt
.
show
()
Event Timeline
Log In to Comment