Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94123895
structural_mechanics_model.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 02:39
Size
13 KB
Mime Type
text/x-c++
Expires
Fri, Dec 6, 02:39 (1 d, 11 h)
Engine
blob
Format
Raw Data
Handle
22709318
Attached To
rAKA akantu
structural_mechanics_model.hh
View Options
/**
* Copyright (©) 2011-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "aka_named_argument.hh"
#include "model.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_STRUCTURAL_MECHANICS_MODEL_HH_
#define AKANTU_STRUCTURAL_MECHANICS_MODEL_HH_
/* -------------------------------------------------------------------------- */
namespace
akantu
{
class
Material
;
class
MaterialSelector
;
class
DumperIOHelper
;
class
NonLocalManager
;
template
<
ElementKind
kind
,
class
IntegrationOrderFunctor
>
class
IntegratorGauss
;
template
<
ElementKind
kind
>
class
ShapeStructural
;
}
// namespace akantu
namespace
akantu
{
struct
StructuralMaterial
{
Real
E
{
0
};
Real
A
{
1
};
Real
I
{
0
};
Real
Iz
{
0
};
Real
Iy
{
0
};
Real
GJ
{
0
};
Real
rho
{
0
};
Real
t
{
0
};
Real
nu
{
0
};
};
class
StructuralMechanicsModel
:
public
Model
{
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public
:
using
MyFEEngineType
=
FEEngineTemplate
<
IntegratorGauss
,
ShapeStructural
,
_ek_structural
>
;
StructuralMechanicsModel
(
Mesh
&
mesh
,
Int
dim
=
_all_dimensions
,
const
ID
&
id
=
"structural_mechanics_model"
);
~
StructuralMechanicsModel
()
override
;
/// Init full model
void
initFullImpl
(
const
ModelOptions
&
options
)
override
;
/// Init boundary FEEngine
void
initFEEngineBoundary
()
override
;
/* ------------------------------------------------------------------------ */
/* Virtual methods from SolverCallback */
/* ------------------------------------------------------------------------ */
/// get the type of matrix needed
MatrixType
getMatrixType
(
const
ID
&
matrix_id
)
const
override
;
/// callback to assemble a Matrix
void
assembleMatrix
(
const
ID
&
matrix_id
)
override
;
/// callback to assemble a lumped Matrix
void
assembleLumpedMatrix
(
const
ID
&
matrix_id
)
override
;
/// callback to assemble the residual (rhs)
void
assembleResidual
()
override
;
void
assembleResidual
(
const
ID
&
residual_part
)
override
;
bool
canSplitResidual
()
const
override
{
return
true
;
}
void
afterSolveStep
(
bool
converged
)
override
;
/// compute kinetic energy
Real
getKineticEnergy
();
/// compute potential energy
Real
getPotentialEnergy
();
/// compute the specified energy
Real
getEnergy
(
const
ID
&
energy
);
/**
* \brief This function computes the an approximation of the lumped mass.
*
* The mass is computed by looping over all beams and computing their mass.
* The mass of a single beam is computed by the (initial) length of the beam,
* its cross sectional area and its density.
* The beam mass is then equaly distributed among the two nodes.
*
* For computing the rotational inertia, the function assumes that the mass of
* a node is uniformaly distributed inside a disc (2D) or a sphere (3D). The
* size of that disc, depends on the volume of the beam.
*
* Note that the computation of the mass is not unambigius.
* The reason for this is, that the units of `StructralMaterial::rho` are not
* clear. By default the function assumes that its unit are 'Mass per Volume'.
* However, this makes the computed mass different than the consistent mass,
* which seams to assume that its units are 'mass per unit length'.
* The main difference between thge two are not the values, but that the
* first version depends on `StructuralMaterial::A` while the later does not.
* By defining the macro `AKANTU_STRUCTURAL_MECHANICS_CONSISTENT_LUMPED_MASS`
* the function will compute the mass in a way that is consistent with the
* consistent mass matrix.
*
* \note The lumped mass is not stored inside the DOFManager.
*
* \param ghost_type Should ghost types be computed.
*/
void
assembleLumpedMassMatrix
();
/* ------------------------------------------------------------------------ */
/* Virtual methods from Model */
/* ------------------------------------------------------------------------ */
protected
:
/// get some default values for derived classes
std
::
tuple
<
ID
,
TimeStepSolverType
>
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
override
;
ModelSolverOptions
getDefaultSolverOptions
(
const
TimeStepSolverType
&
type
)
const
override
;
static
UInt
getNbDegreeOfFreedom
(
ElementType
type
);
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
void
initSolver
(
TimeStepSolverType
time_step_solver_type
,
NonLinearSolverType
non_linear_solver_type
)
override
;
/// initialize the model
void
initModel
()
override
;
/// compute the stresses per elements
void
computeStresses
();
/// compute the nodal forces
void
assembleInternalForce
();
/// compute the nodal forces for an element type
void
assembleInternalForce
(
ElementType
type
,
GhostType
gt
);
/// assemble the stiffness matrix
void
assembleStiffnessMatrix
();
/// assemble the mass matrix for consistent mass resolutions
void
assembleMassMatrix
();
protected
:
/// assemble the mass matrix for either _ghost or _not_ghost elements
void
assembleMassMatrix
(
GhostType
ghost_type
);
/// computes rho
void
computeRho
(
Array
<
Real
>
&
rho
,
ElementType
type
,
GhostType
ghost_type
);
/// finish the computation of residual to solve in increment
void
updateResidualInternal
();
/* ------------------------------------------------------------------------ */
private
:
template
<
ElementType
type
>
void
assembleStiffnessMatrix
();
template
<
ElementType
type
>
void
computeStressOnQuad
();
template
<
ElementType
type
>
void
computeTangentModuli
(
Array
<
Real
>
&
tangent_moduli
);
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public
:
std
::
shared_ptr
<
dumpers
::
Field
>
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
)
override
;
std
::
shared_ptr
<
dumpers
::
Field
>
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
)
override
;
std
::
shared_ptr
<
dumpers
::
Field
>
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
,
Int
spatial_dimension
,
ElementKind
kind
)
override
;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public
:
/// set the value of the time step
void
setTimeStep
(
Real
time_step
,
const
ID
&
solver_id
=
""
)
override
;
/// get the StructuralMechanicsModel::displacement vector
AKANTU_GET_MACRO
(
Displacement
,
*
displacement_rotation
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::velocity vector
AKANTU_GET_MACRO
(
Velocity
,
*
velocity
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::acceleration vector, updated
/// by
/// StructuralMechanicsModel::updateAcceleration
AKANTU_GET_MACRO
(
Acceleration
,
*
acceleration
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::external_force vector
AKANTU_GET_MACRO
(
ExternalForce
,
*
external_force
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::internal_force vector (boundary forces)
AKANTU_GET_MACRO
(
InternalForce
,
*
internal_force
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::boundary vector
AKANTU_GET_MACRO
(
BlockedDOFs
,
*
blocked_dofs
,
Array
<
bool
>
&
);
/**
* Returns a const reference to the array that stores the lumped mass.
*
* The returned array has dimension `N x d` where `N` is the number of nodes
* and `d`, is the number of degrees of freedom per node.
*/
inline
const
Array
<
Real
>
&
getLumpedMass
()
const
{
if
(
this
->
mass
==
nullptr
)
{
AKANTU_EXCEPTION
(
"The pointer to the mass was not allocated."
);
};
return
*
(
this
->
mass
);
};
// These function is an alias, for compability with the solid mechanics
inline
const
Array
<
Real
>
&
getMass
()
const
{
return
this
->
getLumpedMass
();
}
// Creates the array for storing the mass
bool
allocateLumpedMassArray
();
/**
* Tests if *this has a lumped mass pointer.
*/
inline
bool
hasLumpedMass
()
const
{
return
(
this
->
mass
!=
nullptr
);
};
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
RotationMatrix
,
rotation_matrix
,
Real
);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
Stress
,
stress
,
Real
);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE
(
ElementMaterial
,
element_material
,
UInt
);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE
(
Set_ID
,
set_ID
,
UInt
);
/**
* \brief This function adds the `StructuralMaterial` material to the list of
* materials managed by *this.
*
* It is important that this function might invalidate all references to
* structural materials, that were previously optained by `getMaterial()`.
*
* \param material The new material.
* \param name the name associated to this material
*
* \return The ID of the material that was added.
*
* \note The return type is is new.
*/
UInt
addMaterial
(
StructuralMaterial
&
material
,
const
ID
&
name
=
""
);
const
StructuralMaterial
&
getMaterialByElement
(
const
Element
&
element
)
const
;
/**
* \brief Returns the ith material of *this.
* \param material_index The index of requested material
*/
const
StructuralMaterial
&
getMaterial
(
UInt
material_index
)
const
;
const
StructuralMaterial
&
getMaterial
(
const
ID
&
name
)
const
;
/**
* \brief Returns the number of the different materials inside *this.
*/
UInt
getNbMaterials
()
const
{
return
materials
.
size
();
}
/* ------------------------------------------------------------------------ */
/* Boundaries (structural_mechanics_model_boundary.cc) */
/* ------------------------------------------------------------------------ */
public
:
/// Compute Linear load function set in global axis
void
computeForcesByGlobalTractionArray
(
const
Array
<
Real
>
&
traction_global
,
ElementType
type
);
/// Compute Linear load function set in local axis
void
computeForcesByLocalTractionArray
(
const
Array
<
Real
>
&
tractions
,
ElementType
type
);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private
:
/// time step
Real
time_step
;
/// conversion coefficient form force/mass to acceleration
Real
f_m2a
;
/// displacements array
std
::
unique_ptr
<
Array
<
Real
>>
displacement_rotation
;
/// velocities array
std
::
unique_ptr
<
Array
<
Real
>>
velocity
;
/// accelerations array
std
::
unique_ptr
<
Array
<
Real
>>
acceleration
;
/// forces array
std
::
unique_ptr
<
Array
<
Real
>>
internal_force
;
/// forces array
std
::
unique_ptr
<
Array
<
Real
>>
external_force
;
/**
* \brief This is the "lumped" mass array.
*
* It is a bit special, since it is not a one dimensional array, bit it is
* actually a matrix. The number of rows equals the number of nodes. The
* number of colums equals the number of degrees of freedoms per node. This
* layout makes the thing a bit more simple.
*
* Note that it is only allocated in case, the "Lumped" mode is enabled.
*/
std
::
unique_ptr
<
Array
<
Real
>>
mass
;
/// boundaries array
std
::
unique_ptr
<
Array
<
bool
>>
blocked_dofs
;
/// stress array
ElementTypeMapArray
<
Real
>
stress
;
ElementTypeMapArray
<
UInt
>
element_material
;
// Define sets of beams
ElementTypeMapArray
<
UInt
>
set_ID
;
/// number of degre of freedom
Int
nb_degree_of_freedom
;
// Rotation matrix
ElementTypeMapArray
<
Real
>
rotation_matrix
;
// /// analysis method check the list in akantu::AnalysisMethod
// AnalysisMethod method;
/// flag defining if the increment must be computed or not
bool
increment_flag
;
bool
need_to_reassemble_mass
{
true
};
bool
need_to_reassemble_stiffness
{
true
};
bool
need_to_reassemble_lumped_mass
{
true
};
/* ------------------------------------------------------------------------ */
std
::
vector
<
StructuralMaterial
>
materials
;
std
::
map
<
std
::
string
,
UInt
>
materials_names_to_id
;
};
}
// namespace akantu
#include "structural_mechanics_model_inline_impl.hh"
#endif
/* AKANTU_STRUCTURAL_MECHANICS_MODEL_HH_ */
Event Timeline
Log In to Comment