Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94202998
ExplicitFunctors.hpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 17:10
Size
51 KB
Mime Type
text/x-c
Expires
Fri, Dec 6, 17:10 (1 d, 15 h)
Engine
blob
Format
Raw Data
Handle
22742926
Attached To
rLAMMPS lammps
ExplicitFunctors.hpp
View Options
/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_EXPLICITFUNCTORS_HPP
#define KOKKOS_EXPLICITFUNCTORS_HPP
#include <math.h>
#include <Kokkos_Core.hpp>
#include <FEMesh.hpp>
namespace
Explicit
{
template
<
typename
Scalar
,
class
Device
>
struct
Fields
{
static
const
int
NumStates
=
2
;
static
const
int
SpatialDim
=
3
;
static
const
int
ElemNodeCount
=
8
;
// Indices for full 3x3 tensor:
static
const
int
K_F_XX
=
0
;
static
const
int
K_F_YY
=
1
;
static
const
int
K_F_ZZ
=
2
;
static
const
int
K_F_XY
=
3
;
static
const
int
K_F_YZ
=
4
;
static
const
int
K_F_ZX
=
5
;
static
const
int
K_F_YX
=
6
;
static
const
int
K_F_ZY
=
7
;
static
const
int
K_F_XZ
=
8
;
// Indexes into a 3 by 3 symmetric tensor stored as a length 6 vector
static
const
int
K_S_XX
=
0
;
static
const
int
K_S_YY
=
1
;
static
const
int
K_S_ZZ
=
2
;
static
const
int
K_S_XY
=
3
;
static
const
int
K_S_YZ
=
4
;
static
const
int
K_S_ZX
=
5
;
static
const
int
K_S_YX
=
3
;
static
const
int
K_S_ZY
=
4
;
static
const
int
K_S_XZ
=
5
;
// Indexes into a 3 by 3 skew symmetric tensor stored as a length 3 vector
static
const
int
K_V_XY
=
0
;
static
const
int
K_V_YZ
=
1
;
static
const
int
K_V_ZX
=
2
;
typedef
Device
execution_space
;
typedef
typename
execution_space
::
size_type
size_type
;
typedef
HybridFEM
::
FEMesh
<
double
,
ElemNodeCount
,
execution_space
>
FEMesh
;
typedef
typename
FEMesh
::
node_coords_type
node_coords_type
;
typedef
typename
FEMesh
::
elem_node_ids_type
elem_node_ids_type
;
typedef
typename
FEMesh
::
node_elem_ids_type
node_elem_ids_type
;
typedef
typename
Kokkos
::
ParallelDataMap
parallel_data_map
;
typedef
Kokkos
::
View
<
double
[][
SpatialDim
][
NumStates
]
,
execution_space
>
geom_state_array_type
;
typedef
Kokkos
::
View
<
Scalar
[][
SpatialDim
]
,
execution_space
>
geom_array_type
;
typedef
Kokkos
::
View
<
Scalar
[]
,
execution_space
>
array_type
;
typedef
Kokkos
::
View
<
Scalar
,
execution_space
>
scalar_type
;
typedef
Kokkos
::
View
<
Scalar
[][
6
]
,
execution_space
>
elem_sym_tensor_type
;
typedef
Kokkos
::
View
<
Scalar
[][
9
]
,
execution_space
>
elem_tensor_type
;
typedef
Kokkos
::
View
<
Scalar
[][
9
][
NumStates
]
,
execution_space
>
elem_tensor_state_type
;
typedef
Kokkos
::
View
<
Scalar
[][
SpatialDim
][
ElemNodeCount
]
,
execution_space
>
elem_node_geom_type
;
// Parameters:
const
int
num_nodes
;
const
int
num_nodes_owned
;
const
int
num_elements
;
const
Scalar
lin_bulk_visc
;
const
Scalar
quad_bulk_visc
;
const
Scalar
two_mu
;
const
Scalar
bulk_modulus
;
const
Scalar
density
;
// Mesh:
const
elem_node_ids_type
elem_node_connectivity
;
const
node_elem_ids_type
node_elem_connectivity
;
const
node_coords_type
model_coords
;
// Compute:
const
scalar_type
dt
;
const
scalar_type
prev_dt
;
const
geom_state_array_type
displacement
;
const
geom_state_array_type
velocity
;
const
geom_array_type
acceleration
;
const
geom_array_type
internal_force
;
const
array_type
nodal_mass
;
const
array_type
elem_mass
;
const
array_type
internal_energy
;
const
elem_sym_tensor_type
stress_new
;
const
elem_tensor_state_type
rotation
;
const
elem_node_geom_type
element_force
;
const
elem_tensor_type
vel_grad
;
const
elem_sym_tensor_type
stretch
;
const
elem_sym_tensor_type
rot_stretch
;
Fields
(
const
FEMesh
&
mesh
,
Scalar
arg_lin_bulk_visc
,
Scalar
arg_quad_bulk_visc
,
Scalar
youngs_modulus
,
Scalar
poissons_ratio
,
Scalar
arg_density
)
:
num_nodes
(
mesh
.
parallel_data_map
.
count_owned
+
mesh
.
parallel_data_map
.
count_receive
)
,
num_nodes_owned
(
mesh
.
parallel_data_map
.
count_owned
)
,
num_elements
(
mesh
.
elem_node_ids
.
dimension_0
()
)
,
lin_bulk_visc
(
arg_lin_bulk_visc
)
,
quad_bulk_visc
(
arg_quad_bulk_visc
)
,
two_mu
(
youngs_modulus
/
(
1.0
+
poissons_ratio
))
,
bulk_modulus
(
youngs_modulus
/
(
3
*
(
1.0
-
2.0
*
poissons_ratio
)))
,
density
(
arg_density
)
// mesh
,
elem_node_connectivity
(
mesh
.
elem_node_ids
)
// ( num_elements , ElemNodeCount )
,
node_elem_connectivity
(
mesh
.
node_elem_ids
)
// ( num_nodes , ... )
,
model_coords
(
mesh
.
node_coords
)
// ( num_nodes , 3 )
// compute with input/output
,
dt
(
"dt"
)
,
prev_dt
(
"prev_dt"
)
,
displacement
(
"displacement"
,
num_nodes
)
,
velocity
(
"velocity"
,
num_nodes
)
,
acceleration
(
"acceleration"
,
num_nodes_owned
)
,
internal_force
(
"internal_force"
,
num_nodes_owned
)
,
nodal_mass
(
"nodal_mass"
,
num_nodes_owned
)
,
elem_mass
(
"elem_mass"
,
num_elements
)
,
internal_energy
(
"internal_energy"
,
num_elements
)
,
stress_new
(
"stress_new"
,
num_elements
)
// temporary arrays
,
rotation
(
"rotation"
,
num_elements
)
,
element_force
(
"element_force"
,
num_elements
)
,
vel_grad
(
"vel_grad"
,
num_elements
)
,
stretch
(
"stretch"
,
num_elements
)
,
rot_stretch
(
"rot_stretch"
,
num_elements
)
{
}
};
//----------------------------------------------------------------------------
template
<
typename
Scalar
,
class
DeviceType
>
KOKKOS_INLINE_FUNCTION
Scalar
dot8
(
const
Scalar
*
a
,
const
Scalar
*
b
)
{
return
a
[
0
]
*
b
[
0
]
+
a
[
1
]
*
b
[
1
]
+
a
[
2
]
*
b
[
2
]
+
a
[
3
]
*
b
[
3
]
+
a
[
4
]
*
b
[
4
]
+
a
[
5
]
*
b
[
5
]
+
a
[
6
]
*
b
[
6
]
+
a
[
7
]
*
b
[
7
]
;
}
template
<
typename
Scalar
,
class
DeviceType
>
KOKKOS_INLINE_FUNCTION
void
comp_grad
(
const
Scalar
*
const
x
,
const
Scalar
*
const
y
,
const
Scalar
*
const
z
,
Scalar
*
const
grad_x
,
Scalar
*
const
grad_y
,
Scalar
*
const
grad_z
)
{
// calc X difference vectors
Scalar
R42
=
(
x
[
3
]
-
x
[
1
]);
Scalar
R52
=
(
x
[
4
]
-
x
[
1
]);
Scalar
R54
=
(
x
[
4
]
-
x
[
3
]);
Scalar
R63
=
(
x
[
5
]
-
x
[
2
]);
Scalar
R83
=
(
x
[
7
]
-
x
[
2
]);
Scalar
R86
=
(
x
[
7
]
-
x
[
5
]);
Scalar
R31
=
(
x
[
2
]
-
x
[
0
]);
Scalar
R61
=
(
x
[
5
]
-
x
[
0
]);
Scalar
R74
=
(
x
[
6
]
-
x
[
3
]);
Scalar
R72
=
(
x
[
6
]
-
x
[
1
]);
Scalar
R75
=
(
x
[
6
]
-
x
[
4
]);
Scalar
R81
=
(
x
[
7
]
-
x
[
0
]);
Scalar
t1
=
(
R63
+
R54
);
Scalar
t2
=
(
R61
+
R74
);
Scalar
t3
=
(
R72
+
R81
);
Scalar
t4
=
(
R86
+
R42
);
Scalar
t5
=
(
R83
+
R52
);
Scalar
t6
=
(
R75
+
R31
);
// Calculate Y gradient from X and Z data
grad_y
[
0
]
=
(
z
[
1
]
*
t1
)
-
(
z
[
2
]
*
R42
)
-
(
z
[
3
]
*
t5
)
+
(
z
[
4
]
*
t4
)
+
(
z
[
5
]
*
R52
)
-
(
z
[
7
]
*
R54
);
grad_y
[
1
]
=
(
z
[
2
]
*
t2
)
+
(
z
[
3
]
*
R31
)
-
(
z
[
0
]
*
t1
)
-
(
z
[
5
]
*
t6
)
+
(
z
[
6
]
*
R63
)
-
(
z
[
4
]
*
R61
);
grad_y
[
2
]
=
(
z
[
3
]
*
t3
)
+
(
z
[
0
]
*
R42
)
-
(
z
[
1
]
*
t2
)
-
(
z
[
6
]
*
t4
)
+
(
z
[
7
]
*
R74
)
-
(
z
[
5
]
*
R72
);
grad_y
[
3
]
=
(
z
[
0
]
*
t5
)
-
(
z
[
1
]
*
R31
)
-
(
z
[
2
]
*
t3
)
+
(
z
[
7
]
*
t6
)
+
(
z
[
4
]
*
R81
)
-
(
z
[
6
]
*
R83
);
grad_y
[
4
]
=
(
z
[
5
]
*
t3
)
+
(
z
[
6
]
*
R86
)
-
(
z
[
7
]
*
t2
)
-
(
z
[
0
]
*
t4
)
-
(
z
[
3
]
*
R81
)
+
(
z
[
1
]
*
R61
);
grad_y
[
5
]
=
(
z
[
6
]
*
t5
)
-
(
z
[
4
]
*
t3
)
-
(
z
[
7
]
*
R75
)
+
(
z
[
1
]
*
t6
)
-
(
z
[
0
]
*
R52
)
+
(
z
[
2
]
*
R72
);
grad_y
[
6
]
=
(
z
[
7
]
*
t1
)
-
(
z
[
5
]
*
t5
)
-
(
z
[
4
]
*
R86
)
+
(
z
[
2
]
*
t4
)
-
(
z
[
1
]
*
R63
)
+
(
z
[
3
]
*
R83
);
grad_y
[
7
]
=
(
z
[
4
]
*
t2
)
-
(
z
[
6
]
*
t1
)
+
(
z
[
5
]
*
R75
)
-
(
z
[
3
]
*
t6
)
-
(
z
[
2
]
*
R74
)
+
(
z
[
0
]
*
R54
);
// calc Z difference vectors
R42
=
(
z
[
3
]
-
z
[
1
]);
R52
=
(
z
[
4
]
-
z
[
1
]);
R54
=
(
z
[
4
]
-
z
[
3
]);
R63
=
(
z
[
5
]
-
z
[
2
]);
R83
=
(
z
[
7
]
-
z
[
2
]);
R86
=
(
z
[
7
]
-
z
[
5
]);
R31
=
(
z
[
2
]
-
z
[
0
]);
R61
=
(
z
[
5
]
-
z
[
0
]);
R74
=
(
z
[
6
]
-
z
[
3
]);
R72
=
(
z
[
6
]
-
z
[
1
]);
R75
=
(
z
[
6
]
-
z
[
4
]);
R81
=
(
z
[
7
]
-
z
[
0
]);
t1
=
(
R63
+
R54
);
t2
=
(
R61
+
R74
);
t3
=
(
R72
+
R81
);
t4
=
(
R86
+
R42
);
t5
=
(
R83
+
R52
);
t6
=
(
R75
+
R31
);
// Calculate X gradient from Y and Z data
grad_x
[
0
]
=
(
y
[
1
]
*
t1
)
-
(
y
[
2
]
*
R42
)
-
(
y
[
3
]
*
t5
)
+
(
y
[
4
]
*
t4
)
+
(
y
[
5
]
*
R52
)
-
(
y
[
7
]
*
R54
);
grad_x
[
1
]
=
(
y
[
2
]
*
t2
)
+
(
y
[
3
]
*
R31
)
-
(
y
[
0
]
*
t1
)
-
(
y
[
5
]
*
t6
)
+
(
y
[
6
]
*
R63
)
-
(
y
[
4
]
*
R61
);
grad_x
[
2
]
=
(
y
[
3
]
*
t3
)
+
(
y
[
0
]
*
R42
)
-
(
y
[
1
]
*
t2
)
-
(
y
[
6
]
*
t4
)
+
(
y
[
7
]
*
R74
)
-
(
y
[
5
]
*
R72
);
grad_x
[
3
]
=
(
y
[
0
]
*
t5
)
-
(
y
[
1
]
*
R31
)
-
(
y
[
2
]
*
t3
)
+
(
y
[
7
]
*
t6
)
+
(
y
[
4
]
*
R81
)
-
(
y
[
6
]
*
R83
);
grad_x
[
4
]
=
(
y
[
5
]
*
t3
)
+
(
y
[
6
]
*
R86
)
-
(
y
[
7
]
*
t2
)
-
(
y
[
0
]
*
t4
)
-
(
y
[
3
]
*
R81
)
+
(
y
[
1
]
*
R61
);
grad_x
[
5
]
=
(
y
[
6
]
*
t5
)
-
(
y
[
4
]
*
t3
)
-
(
y
[
7
]
*
R75
)
+
(
y
[
1
]
*
t6
)
-
(
y
[
0
]
*
R52
)
+
(
y
[
2
]
*
R72
);
grad_x
[
6
]
=
(
y
[
7
]
*
t1
)
-
(
y
[
5
]
*
t5
)
-
(
y
[
4
]
*
R86
)
+
(
y
[
2
]
*
t4
)
-
(
y
[
1
]
*
R63
)
+
(
y
[
3
]
*
R83
);
grad_x
[
7
]
=
(
y
[
4
]
*
t2
)
-
(
y
[
6
]
*
t1
)
+
(
y
[
5
]
*
R75
)
-
(
y
[
3
]
*
t6
)
-
(
y
[
2
]
*
R74
)
+
(
y
[
0
]
*
R54
);
// calc Y difference vectors
R42
=
(
y
[
3
]
-
y
[
1
]);
R52
=
(
y
[
4
]
-
y
[
1
]);
R54
=
(
y
[
4
]
-
y
[
3
]);
R63
=
(
y
[
5
]
-
y
[
2
]);
R83
=
(
y
[
7
]
-
y
[
2
]);
R86
=
(
y
[
7
]
-
y
[
5
]);
R31
=
(
y
[
2
]
-
y
[
0
]);
R61
=
(
y
[
5
]
-
y
[
0
]);
R74
=
(
y
[
6
]
-
y
[
3
]);
R72
=
(
y
[
6
]
-
y
[
1
]);
R75
=
(
y
[
6
]
-
y
[
4
]);
R81
=
(
y
[
7
]
-
y
[
0
]);
t1
=
(
R63
+
R54
);
t2
=
(
R61
+
R74
);
t3
=
(
R72
+
R81
);
t4
=
(
R86
+
R42
);
t5
=
(
R83
+
R52
);
t6
=
(
R75
+
R31
);
// Calculate Z gradient from X and Y data
grad_z
[
0
]
=
(
x
[
1
]
*
t1
)
-
(
x
[
2
]
*
R42
)
-
(
x
[
3
]
*
t5
)
+
(
x
[
4
]
*
t4
)
+
(
x
[
5
]
*
R52
)
-
(
x
[
7
]
*
R54
);
grad_z
[
1
]
=
(
x
[
2
]
*
t2
)
+
(
x
[
3
]
*
R31
)
-
(
x
[
0
]
*
t1
)
-
(
x
[
5
]
*
t6
)
+
(
x
[
6
]
*
R63
)
-
(
x
[
4
]
*
R61
);
grad_z
[
2
]
=
(
x
[
3
]
*
t3
)
+
(
x
[
0
]
*
R42
)
-
(
x
[
1
]
*
t2
)
-
(
x
[
6
]
*
t4
)
+
(
x
[
7
]
*
R74
)
-
(
x
[
5
]
*
R72
);
grad_z
[
3
]
=
(
x
[
0
]
*
t5
)
-
(
x
[
1
]
*
R31
)
-
(
x
[
2
]
*
t3
)
+
(
x
[
7
]
*
t6
)
+
(
x
[
4
]
*
R81
)
-
(
x
[
6
]
*
R83
);
grad_z
[
4
]
=
(
x
[
5
]
*
t3
)
+
(
x
[
6
]
*
R86
)
-
(
x
[
7
]
*
t2
)
-
(
x
[
0
]
*
t4
)
-
(
x
[
3
]
*
R81
)
+
(
x
[
1
]
*
R61
);
grad_z
[
5
]
=
(
x
[
6
]
*
t5
)
-
(
x
[
4
]
*
t3
)
-
(
x
[
7
]
*
R75
)
+
(
x
[
1
]
*
t6
)
-
(
x
[
0
]
*
R52
)
+
(
x
[
2
]
*
R72
);
grad_z
[
6
]
=
(
x
[
7
]
*
t1
)
-
(
x
[
5
]
*
t5
)
-
(
x
[
4
]
*
R86
)
+
(
x
[
2
]
*
t4
)
-
(
x
[
1
]
*
R63
)
+
(
x
[
3
]
*
R83
);
grad_z
[
7
]
=
(
x
[
4
]
*
t2
)
-
(
x
[
6
]
*
t1
)
+
(
x
[
5
]
*
R75
)
-
(
x
[
3
]
*
t6
)
-
(
x
[
2
]
*
R74
)
+
(
x
[
0
]
*
R54
);
}
//----------------------------------------------------------------------------
template
<
typename
Scalar
,
class
DeviceType
>
struct
initialize_element
{
typedef
DeviceType
execution_space
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
typename
Fields
::
elem_node_ids_type
elem_node_connectivity
;
typename
Fields
::
node_coords_type
model_coords
;
typename
Fields
::
elem_sym_tensor_type
stretch
;
typename
Fields
::
elem_tensor_state_type
rotation
;
typename
Fields
::
array_type
elem_mass
;
const
Scalar
density
;
initialize_element
(
const
Fields
&
mesh_fields
)
:
elem_node_connectivity
(
mesh_fields
.
elem_node_connectivity
)
,
model_coords
(
mesh_fields
.
model_coords
)
,
stretch
(
mesh_fields
.
stretch
)
,
rotation
(
mesh_fields
.
rotation
)
,
elem_mass
(
mesh_fields
.
elem_mass
)
,
density
(
mesh_fields
.
density
)
{}
KOKKOS_INLINE_FUNCTION
void
operator
()(
int
ielem
)
const
{
const
int
K_XX
=
0
;
const
int
K_YY
=
1
;
const
int
K_ZZ
=
2
;
const
Scalar
ONE12TH
=
1.0
/
12.0
;
Scalar
x
[
Fields
::
ElemNodeCount
];
Scalar
y
[
Fields
::
ElemNodeCount
];
Scalar
z
[
Fields
::
ElemNodeCount
];
Scalar
grad_x
[
Fields
::
ElemNodeCount
];
Scalar
grad_y
[
Fields
::
ElemNodeCount
];
Scalar
grad_z
[
Fields
::
ElemNodeCount
];
for
(
int
i
=
0
;
i
<
Fields
::
ElemNodeCount
;
++
i
)
{
const
int
n
=
elem_node_connectivity
(
ielem
,
i
);
x
[
i
]
=
model_coords
(
n
,
0
);
y
[
i
]
=
model_coords
(
n
,
1
);
z
[
i
]
=
model_coords
(
n
,
2
);
}
comp_grad
<
Scalar
,
execution_space
>
(
x
,
y
,
z
,
grad_x
,
grad_y
,
grad_z
);
stretch
(
ielem
,
K_XX
)
=
1
;
stretch
(
ielem
,
K_YY
)
=
1
;
stretch
(
ielem
,
K_ZZ
)
=
1
;
rotation
(
ielem
,
K_XX
,
0
)
=
1
;
rotation
(
ielem
,
K_YY
,
0
)
=
1
;
rotation
(
ielem
,
K_ZZ
,
0
)
=
1
;
rotation
(
ielem
,
K_XX
,
1
)
=
1
;
rotation
(
ielem
,
K_YY
,
1
)
=
1
;
rotation
(
ielem
,
K_ZZ
,
1
)
=
1
;
elem_mass
(
ielem
)
=
ONE12TH
*
density
*
dot8
<
Scalar
,
execution_space
>
(
x
,
grad_x
);
}
static
void
apply
(
const
Fields
&
mesh_fields
)
{
initialize_element
op
(
mesh_fields
);
Kokkos
::
parallel_for
(
mesh_fields
.
num_elements
,
op
);
}
};
template
<
typename
Scalar
,
class
DeviceType
>
struct
initialize_node
{
typedef
DeviceType
execution_space
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
typename
Fields
::
node_elem_ids_type
node_elem_connectivity
;
typename
Fields
::
array_type
nodal_mass
;
typename
Fields
::
array_type
elem_mass
;
static
const
int
ElemNodeCount
=
Fields
::
ElemNodeCount
;
initialize_node
(
const
Fields
&
mesh_fields
)
:
node_elem_connectivity
(
mesh_fields
.
node_elem_connectivity
)
,
nodal_mass
(
mesh_fields
.
nodal_mass
)
,
elem_mass
(
mesh_fields
.
elem_mass
)
{}
KOKKOS_INLINE_FUNCTION
void
operator
()(
int
inode
)
const
{
const
int
begin
=
node_elem_connectivity
.
row_map
[
inode
];
const
int
end
=
node_elem_connectivity
.
row_map
[
inode
+
1
];
Scalar
node_mass
=
0
;
for
(
int
i
=
begin
;
i
!=
end
;
++
i
)
{
const
int
elem_id
=
node_elem_connectivity
.
entries
(
i
,
0
);
node_mass
+=
elem_mass
(
elem_id
);
}
nodal_mass
(
inode
)
=
node_mass
/
ElemNodeCount
;
}
static
void
apply
(
const
Fields
&
mesh_fields
)
{
initialize_node
op
(
mesh_fields
);
Kokkos
::
parallel_for
(
mesh_fields
.
num_nodes_owned
,
op
);
}
};
//----------------------------------------------------------------------------
template
<
typename
Scalar
,
class
DeviceType
>
struct
grad
{
typedef
DeviceType
execution_space
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
static
const
int
ElemNodeCount
=
Fields
::
ElemNodeCount
;
static
const
int
K_F_XX
=
Fields
::
K_F_XX
;
static
const
int
K_F_YY
=
Fields
::
K_F_YY
;
static
const
int
K_F_ZZ
=
Fields
::
K_F_ZZ
;
static
const
int
K_F_XY
=
Fields
::
K_F_XY
;
static
const
int
K_F_YZ
=
Fields
::
K_F_YZ
;
static
const
int
K_F_ZX
=
Fields
::
K_F_ZX
;
static
const
int
K_F_YX
=
Fields
::
K_F_YX
;
static
const
int
K_F_ZY
=
Fields
::
K_F_ZY
;
static
const
int
K_F_XZ
=
Fields
::
K_F_XZ
;
// Global arrays used by this functor.
const
typename
Fields
::
elem_node_ids_type
elem_node_connectivity
;
const
typename
Fields
::
node_coords_type
model_coords
;
const
typename
Fields
::
geom_state_array_type
displacement
;
const
typename
Fields
::
geom_state_array_type
velocity
;
const
typename
Fields
::
elem_tensor_type
vel_grad
;
const
typename
Fields
::
scalar_type
dt
;
const
int
current_state
;
const
int
previous_state
;
// Constructor on the Host to populate this device functor.
// All array view copies are shallow.
grad
(
const
Fields
&
fields
,
const
int
arg_current_state
,
const
int
arg_previous_state
)
:
elem_node_connectivity
(
fields
.
elem_node_connectivity
)
,
model_coords
(
fields
.
model_coords
)
,
displacement
(
fields
.
displacement
)
,
velocity
(
fields
.
velocity
)
,
vel_grad
(
fields
.
vel_grad
)
,
dt
(
fields
.
dt
)
,
current_state
(
arg_current_state
)
,
previous_state
(
arg_previous_state
)
{
}
//--------------------------------------------------------------------------
// Calculate Velocity Gradients
KOKKOS_INLINE_FUNCTION
void
v_grad
(
int
ielem
,
Scalar
*
vx
,
Scalar
*
vy
,
Scalar
*
vz
,
Scalar
*
grad_x
,
Scalar
*
grad_y
,
Scalar
*
grad_z
,
Scalar
inv_vol
)
const
{
const
int
K_F_XX
=
Fields
::
K_F_XX
;
const
int
K_F_YY
=
Fields
::
K_F_YY
;
const
int
K_F_ZZ
=
Fields
::
K_F_ZZ
;
const
int
K_F_XY
=
Fields
::
K_F_XY
;
const
int
K_F_YZ
=
Fields
::
K_F_YZ
;
const
int
K_F_ZX
=
Fields
::
K_F_ZX
;
const
int
K_F_YX
=
Fields
::
K_F_YX
;
const
int
K_F_ZY
=
Fields
::
K_F_ZY
;
const
int
K_F_XZ
=
Fields
::
K_F_XZ
;
vel_grad
(
ielem
,
K_F_XX
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vx
,
grad_x
);
vel_grad
(
ielem
,
K_F_YX
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vy
,
grad_x
);
vel_grad
(
ielem
,
K_F_ZX
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vz
,
grad_x
);
vel_grad
(
ielem
,
K_F_XY
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vx
,
grad_y
);
vel_grad
(
ielem
,
K_F_YY
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vy
,
grad_y
);
vel_grad
(
ielem
,
K_F_ZY
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vz
,
grad_y
);
vel_grad
(
ielem
,
K_F_XZ
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vx
,
grad_z
);
vel_grad
(
ielem
,
K_F_YZ
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vy
,
grad_z
);
vel_grad
(
ielem
,
K_F_ZZ
)
=
inv_vol
*
dot8
<
Scalar
,
execution_space
>
(
vz
,
grad_z
);
}
//--------------------------------------------------------------------------
// Functor operator() which calls the three member functions.
KOKKOS_INLINE_FUNCTION
void
operator
()(
int
ielem
)
const
{
const
int
X
=
0
;
const
int
Y
=
1
;
const
int
Z
=
2
;
const
Scalar
dt_scale
=
-
0.5
*
*
dt
;
// declare and reuse local data for frequently accessed data to
// reduce global memory reads and writes.
Scalar
x
[
8
],
y
[
8
],
z
[
8
];
Scalar
vx
[
8
],
vy
[
8
],
vz
[
8
];
Scalar
grad_x
[
8
],
grad_y
[
8
],
grad_z
[
8
];
// Read global velocity once and use many times
// via local registers / L1 cache.
// store the velocity information in local memory before using,
// so it can be returned for other functions to use
// Read global coordinates and velocity once and use many times
// via local registers / L1 cache.
// load X coordinate information and move by half time step
for
(
int
i
=
0
;
i
<
ElemNodeCount
;
++
i
)
{
const
int
n
=
elem_node_connectivity
(
ielem
,
i
);
vx
[
i
]
=
velocity
(
n
,
X
,
current_state
);
vy
[
i
]
=
velocity
(
n
,
Y
,
current_state
);
vz
[
i
]
=
velocity
(
n
,
Z
,
current_state
);
x
[
i
]
=
model_coords
(
n
,
X
)
+
displacement
(
n
,
X
,
current_state
)
+
dt_scale
*
vx
[
i
];
y
[
i
]
=
model_coords
(
n
,
Y
)
+
displacement
(
n
,
Y
,
current_state
)
+
dt_scale
*
vy
[
i
];
z
[
i
]
=
model_coords
(
n
,
Z
)
+
displacement
(
n
,
Z
,
current_state
)
+
dt_scale
*
vz
[
i
];
}
comp_grad
<
Scalar
,
execution_space
>
(
x
,
y
,
z
,
grad_x
,
grad_y
,
grad_z
);
// Calculate hexahedral volume from x model_coords and gradient information
const
Scalar
inv_vol
=
1.0
/
dot8
<
Scalar
,
execution_space
>
(
x
,
grad_x
);
v_grad
(
ielem
,
vx
,
vy
,
vz
,
grad_x
,
grad_y
,
grad_z
,
inv_vol
);
}
static
void
apply
(
const
Fields
&
fields
,
const
int
arg_current_state
,
const
int
arg_previous_state
)
{
grad
op
(
fields
,
arg_current_state
,
arg_previous_state
);
Kokkos
::
parallel_for
(
fields
.
num_elements
,
op
);
}
};
//----------------------------------------------------------------------------
template
<
typename
Scalar
,
class
DeviceType
>
struct
decomp_rotate
{
typedef
DeviceType
execution_space
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
static
const
int
ElemNodeCount
=
Fields
::
ElemNodeCount
;
static
const
int
K_F_XX
=
Fields
::
K_F_XX
;
static
const
int
K_F_YY
=
Fields
::
K_F_YY
;
static
const
int
K_F_ZZ
=
Fields
::
K_F_ZZ
;
static
const
int
K_F_XY
=
Fields
::
K_F_XY
;
static
const
int
K_F_YZ
=
Fields
::
K_F_YZ
;
static
const
int
K_F_ZX
=
Fields
::
K_F_ZX
;
static
const
int
K_F_YX
=
Fields
::
K_F_YX
;
static
const
int
K_F_ZY
=
Fields
::
K_F_ZY
;
static
const
int
K_F_XZ
=
Fields
::
K_F_XZ
;
static
const
int
K_S_XX
=
Fields
::
K_S_XX
;
static
const
int
K_S_YY
=
Fields
::
K_S_YY
;
static
const
int
K_S_ZZ
=
Fields
::
K_S_ZZ
;
static
const
int
K_S_XY
=
Fields
::
K_S_XY
;
static
const
int
K_S_YZ
=
Fields
::
K_S_YZ
;
static
const
int
K_S_ZX
=
Fields
::
K_S_ZX
;
static
const
int
K_S_YX
=
Fields
::
K_S_YX
;
static
const
int
K_S_ZY
=
Fields
::
K_S_ZY
;
static
const
int
K_S_XZ
=
Fields
::
K_S_XZ
;
static
const
int
K_V_XY
=
Fields
::
K_V_XY
;
static
const
int
K_V_YZ
=
Fields
::
K_V_YZ
;
static
const
int
K_V_ZX
=
Fields
::
K_V_ZX
;
// Global arrays used by this functor.
const
typename
Fields
::
elem_tensor_state_type
rotation
;
const
typename
Fields
::
elem_tensor_type
vel_grad
;
const
typename
Fields
::
elem_sym_tensor_type
stretch
;
const
typename
Fields
::
elem_sym_tensor_type
rot_stretch
;
const
typename
Fields
::
scalar_type
dt_value
;
const
int
current_state
;
const
int
previous_state
;
decomp_rotate
(
const
Fields
&
mesh_fields
,
const
int
arg_current_state
,
const
int
arg_previous_state
)
:
rotation
(
mesh_fields
.
rotation
)
,
vel_grad
(
mesh_fields
.
vel_grad
)
,
stretch
(
mesh_fields
.
stretch
)
,
rot_stretch
(
mesh_fields
.
rot_stretch
)
,
dt_value
(
mesh_fields
.
dt
)
,
current_state
(
arg_current_state
)
,
previous_state
(
arg_previous_state
)
{}
static
void
apply
(
const
Fields
&
mesh_fields
,
const
int
arg_current_state
,
const
int
arg_previous_state
)
{
decomp_rotate
op
(
mesh_fields
,
arg_current_state
,
arg_previous_state
);
Kokkos
::
parallel_for
(
mesh_fields
.
num_elements
,
op
);
}
KOKKOS_INLINE_FUNCTION
void
additive_decomp
(
int
ielem
,
Scalar
*
v_gr
,
Scalar
*
str_ten
)
const
{
// In addition to calculating stretching_tensor,
// use this as an opportunity to load global
// variables into a local space
for
(
int
i
=
0
;
i
<
9
;
++
i
)
{
v_gr
[
i
]
=
vel_grad
(
ielem
,
i
);
}
//
// Symmetric part
//
str_ten
[
K_S_XX
]
=
v_gr
[
K_F_XX
];
str_ten
[
K_S_YY
]
=
v_gr
[
K_F_YY
];
str_ten
[
K_S_ZZ
]
=
v_gr
[
K_F_ZZ
];
str_ten
[
K_S_XY
]
=
0.5
*
(
v_gr
[
K_F_XY
]
+
v_gr
[
K_F_YX
]);
str_ten
[
K_S_YZ
]
=
0.5
*
(
v_gr
[
K_F_YZ
]
+
v_gr
[
K_F_ZY
]);
str_ten
[
K_S_ZX
]
=
0.5
*
(
v_gr
[
K_F_ZX
]
+
v_gr
[
K_F_XZ
]);
}
KOKKOS_INLINE_FUNCTION
void
polar_decomp
(
int
ielem
,
Scalar
*
v_gr
,
Scalar
*
str_ten
,
Scalar
*
str
,
Scalar
*
vort
,
Scalar
*
rot_old
,
Scalar
*
rot_new
)
const
{
const
Scalar
dt
=
*
dt_value
;
const
Scalar
dt_half
=
0.5
*
dt
;
// Skew Symmetric part
vort
[
K_V_XY
]
=
0.5
*
(
v_gr
[
K_F_XY
]
-
v_gr
[
K_F_YX
]);
vort
[
K_V_YZ
]
=
0.5
*
(
v_gr
[
K_F_YZ
]
-
v_gr
[
K_F_ZY
]);
vort
[
K_V_ZX
]
=
0.5
*
(
v_gr
[
K_F_ZX
]
-
v_gr
[
K_F_XZ
]);
// calculate the rates of rotation via gauss elimination.
for
(
int
i
=
0
;
i
<
6
;
++
i
)
{
str
[
i
]
=
stretch
(
ielem
,
i
);
}
Scalar
z1
=
str_ten
[
K_S_XY
]
*
str
[
K_S_ZX
]
-
str_ten
[
K_S_ZX
]
*
str
[
K_S_XY
]
+
str_ten
[
K_S_YY
]
*
str
[
K_S_YZ
]
-
str_ten
[
K_S_YZ
]
*
str
[
K_S_YY
]
+
str_ten
[
K_S_YZ
]
*
str
[
K_S_ZZ
]
-
str_ten
[
K_S_ZZ
]
*
str
[
K_S_YZ
];
Scalar
z2
=
str_ten
[
K_S_ZX
]
*
str
[
K_S_XX
]
-
str_ten
[
K_S_XX
]
*
str
[
K_S_ZX
]
+
str_ten
[
K_S_YZ
]
*
str
[
K_S_XY
]
-
str_ten
[
K_S_XY
]
*
str
[
K_S_YZ
]
+
str_ten
[
K_S_ZZ
]
*
str
[
K_S_ZX
]
-
str_ten
[
K_S_ZX
]
*
str
[
K_S_ZZ
];
Scalar
z3
=
str_ten
[
K_S_XX
]
*
str
[
K_S_XY
]
-
str_ten
[
K_S_XY
]
*
str
[
K_S_XX
]
+
str_ten
[
K_S_XY
]
*
str
[
K_S_YY
]
-
str_ten
[
K_S_YY
]
*
str
[
K_S_XY
]
+
str_ten
[
K_S_ZX
]
*
str
[
K_S_YZ
]
-
str_ten
[
K_S_YZ
]
*
str
[
K_S_ZX
];
// forward elimination
const
Scalar
a1inv
=
1.0
/
(
str
[
K_S_YY
]
+
str
[
K_S_ZZ
]);
const
Scalar
a4BYa1
=
-
1
*
str
[
K_S_XY
]
*
a1inv
;
const
Scalar
a2inv
=
1.0
/
(
str
[
K_S_ZZ
]
+
str
[
K_S_XX
]
+
str
[
K_S_XY
]
*
a4BYa1
);
const
Scalar
a5
=
-
str
[
K_S_YZ
]
+
str
[
K_S_ZX
]
*
a4BYa1
;
z2
-=
z1
*
a4BYa1
;
Scalar
a6BYa1
=
-
1
*
str
[
K_S_ZX
]
*
a1inv
;
const
Scalar
a5BYa2
=
a5
*
a2inv
;
z3
-=
z1
*
a6BYa1
-
z2
*
a5BYa2
;
// backward substitution -
z3
/=
(
str
[
K_S_XX
]
+
str
[
K_S_YY
]
+
str
[
K_S_ZX
]
*
a6BYa1
+
a5
*
a5BYa2
);
z2
=
(
z2
-
a5
*
z3
)
*
a2inv
;
z1
=
(
z1
*
a1inv
-
a6BYa1
*
z3
-
a4BYa1
*
z2
);
// calculate rotation rates - recall that spin_rate is an asymmetric tensor,
// so compute spin rate vector as dual of spin rate tensor,
// i.e w_i = e_ijk * spin_rate_jk
z1
+=
vort
[
K_V_YZ
];
z2
+=
vort
[
K_V_ZX
];
z3
+=
vort
[
K_V_XY
];
// update rotation tensor:
// 1) premultiply old rotation tensor to get right-hand side.
for
(
int
i
=
0
;
i
<
9
;
++
i
)
{
rot_old
[
i
]
=
rotation
(
ielem
,
i
,
previous_state
);
}
Scalar
r_XX
=
rot_old
[
K_F_XX
]
+
dt_half
*
(
z3
*
rot_old
[
K_F_YX
]
-
z2
*
rot_old
[
K_F_ZX
]
);
Scalar
r_YX
=
rot_old
[
K_F_YX
]
+
dt_half
*
(
z1
*
rot_old
[
K_F_ZX
]
-
z3
*
rot_old
[
K_F_XX
]
);
Scalar
r_ZX
=
rot_old
[
K_F_ZX
]
+
dt_half
*
(
z2
*
rot_old
[
K_F_XX
]
-
z1
*
rot_old
[
K_F_YX
]
);
Scalar
r_XY
=
rot_old
[
K_F_XY
]
+
dt_half
*
(
z3
*
rot_old
[
K_F_YY
]
-
z2
*
rot_old
[
K_F_ZY
]
);
Scalar
r_YY
=
rot_old
[
K_F_YY
]
+
dt_half
*
(
z1
*
rot_old
[
K_F_ZY
]
-
z3
*
rot_old
[
K_F_XY
]
);
Scalar
r_ZY
=
rot_old
[
K_F_ZY
]
+
dt_half
*
(
z2
*
rot_old
[
K_F_XY
]
-
z1
*
rot_old
[
K_F_YY
]
);
Scalar
r_XZ
=
rot_old
[
K_F_XZ
]
+
dt_half
*
(
z3
*
rot_old
[
K_F_YZ
]
-
z2
*
rot_old
[
K_F_ZZ
]
);
Scalar
r_YZ
=
rot_old
[
K_F_YZ
]
+
dt_half
*
(
z1
*
rot_old
[
K_F_ZZ
]
-
z3
*
rot_old
[
K_F_XZ
]
);
Scalar
r_ZZ
=
rot_old
[
K_F_ZZ
]
+
dt_half
*
(
z2
*
rot_old
[
K_F_XZ
]
-
z1
*
rot_old
[
K_F_YZ
]
);
// 2) solve for new rotation tensor via gauss elimination.
// forward elimination -
Scalar
a12
=
-
dt_half
*
z3
;
Scalar
a13
=
dt_half
*
z2
;
Scalar
b32
=
-
dt_half
*
z1
;
Scalar
a22inv
=
1.0
/
(
1.0
+
a12
*
a12
);
Scalar
a13a12
=
a13
*
a12
;
Scalar
a23
=
b32
+
a13a12
;
r_YX
+=
r_XX
*
a12
;
r_YY
+=
r_XY
*
a12
;
r_YZ
+=
r_XZ
*
a12
;
b32
=
(
b32
-
a13a12
)
*
a22inv
;
r_ZX
+=
r_XX
*
a13
+
r_YX
*
b32
;
r_ZY
+=
r_XY
*
a13
+
r_YY
*
b32
;
r_ZZ
+=
r_XZ
*
a13
+
r_YZ
*
b32
;
// backward substitution -
const
Scalar
a33inv
=
1.0
/
(
1.0
+
a13
*
a13
+
a23
*
b32
);
rot_new
[
K_F_ZX
]
=
r_ZX
*
a33inv
;
rot_new
[
K_F_ZY
]
=
r_ZY
*
a33inv
;
rot_new
[
K_F_ZZ
]
=
r_ZZ
*
a33inv
;
rot_new
[
K_F_YX
]
=
(
r_YX
-
rot_new
[
K_F_ZX
]
*
a23
)
*
a22inv
;
rot_new
[
K_F_YY
]
=
(
r_YY
-
rot_new
[
K_F_ZY
]
*
a23
)
*
a22inv
;
rot_new
[
K_F_YZ
]
=
(
r_YZ
-
rot_new
[
K_F_ZZ
]
*
a23
)
*
a22inv
;
rot_new
[
K_F_XX
]
=
r_XX
-
rot_new
[
K_F_ZX
]
*
a13
-
rot_new
[
K_F_YX
]
*
a12
;
rot_new
[
K_F_XY
]
=
r_XY
-
rot_new
[
K_F_ZY
]
*
a13
-
rot_new
[
K_F_YY
]
*
a12
;
rot_new
[
K_F_XZ
]
=
r_XZ
-
rot_new
[
K_F_ZZ
]
*
a13
-
rot_new
[
K_F_YZ
]
*
a12
;
for
(
int
i
=
0
;
i
<
9
;
++
i
)
{
rotation
(
ielem
,
i
,
current_state
)
=
rot_new
[
i
]
;
}
// update stretch tensor in the new configuration -
const
Scalar
a1
=
str_ten
[
K_S_XY
]
+
vort
[
K_V_XY
];
const
Scalar
a2
=
str_ten
[
K_S_YZ
]
+
vort
[
K_V_YZ
];
const
Scalar
a3
=
str_ten
[
K_S_ZX
]
+
vort
[
K_V_ZX
];
const
Scalar
b1
=
str_ten
[
K_S_ZX
]
-
vort
[
K_V_ZX
];
const
Scalar
b2
=
str_ten
[
K_S_XY
]
-
vort
[
K_V_XY
];
const
Scalar
b3
=
str_ten
[
K_S_YZ
]
-
vort
[
K_V_YZ
];
const
Scalar
s_XX
=
str
[
K_S_XX
];
const
Scalar
s_YY
=
str
[
K_S_YY
];
const
Scalar
s_ZZ
=
str
[
K_S_ZZ
];
const
Scalar
s_XY
=
str
[
K_S_XY
];
const
Scalar
s_YZ
=
str
[
K_S_YZ
];
const
Scalar
s_ZX
=
str
[
K_S_ZX
];
str
[
K_S_XX
]
+=
dt
*
(
str_ten
[
K_S_XX
]
*
s_XX
+
(
a1
+
z3
)
*
s_XY
+
(
b1
-
z2
)
*
s_ZX
);
str
[
K_S_YY
]
+=
dt
*
(
str_ten
[
K_S_YY
]
*
s_YY
+
(
a2
+
z1
)
*
s_YZ
+
(
b2
-
z3
)
*
s_XY
);
str
[
K_S_ZZ
]
+=
dt
*
(
str_ten
[
K_S_ZZ
]
*
s_ZZ
+
(
a3
+
z2
)
*
s_ZX
+
(
b3
-
z1
)
*
s_YZ
);
str
[
K_S_XY
]
+=
dt
*
(
str_ten
[
K_S_XX
]
*
s_XY
+
(
a1
)
*
s_YY
+
(
b1
)
*
s_YZ
-
z3
*
s_XX
+
z1
*
s_ZX
);
str
[
K_S_YZ
]
+=
dt
*
(
str_ten
[
K_S_YY
]
*
s_YZ
+
(
a2
)
*
s_ZZ
+
(
b2
)
*
s_ZX
-
z1
*
s_YY
+
z2
*
s_XY
);
str
[
K_S_ZX
]
+=
dt
*
(
str_ten
[
K_S_ZZ
]
*
s_ZX
+
(
a3
)
*
s_XX
+
(
b3
)
*
s_XY
-
z2
*
s_ZZ
+
z3
*
s_YZ
);
}
KOKKOS_INLINE_FUNCTION
void
rotate_tensor
(
int
ielem
,
Scalar
*
str_ten
,
Scalar
*
str
,
Scalar
*
rot_new
)
const
{
Scalar
t
[
9
];
Scalar
rot_str
[
6
];
// Rotated stretch
t
[
0
]
=
str_ten
[
K_S_XX
]
*
rot_new
[
K_F_XX
]
+
str_ten
[
K_S_XY
]
*
rot_new
[
K_F_YX
]
+
str_ten
[
K_S_XZ
]
*
rot_new
[
K_F_ZX
];
t
[
1
]
=
str_ten
[
K_S_YX
]
*
rot_new
[
K_F_XX
]
+
str_ten
[
K_S_YY
]
*
rot_new
[
K_F_YX
]
+
str_ten
[
K_S_YZ
]
*
rot_new
[
K_F_ZX
];
t
[
2
]
=
str_ten
[
K_S_ZX
]
*
rot_new
[
K_F_XX
]
+
str_ten
[
K_S_ZY
]
*
rot_new
[
K_F_YX
]
+
str_ten
[
K_S_ZZ
]
*
rot_new
[
K_F_ZX
];
t
[
3
]
=
str_ten
[
K_S_XX
]
*
rot_new
[
K_F_XY
]
+
str_ten
[
K_S_XY
]
*
rot_new
[
K_F_YY
]
+
str_ten
[
K_S_XZ
]
*
rot_new
[
K_F_ZY
];
t
[
4
]
=
str_ten
[
K_S_YX
]
*
rot_new
[
K_F_XY
]
+
str_ten
[
K_S_YY
]
*
rot_new
[
K_F_YY
]
+
str_ten
[
K_S_YZ
]
*
rot_new
[
K_F_ZY
];
t
[
5
]
=
str_ten
[
K_S_ZX
]
*
rot_new
[
K_F_XY
]
+
str_ten
[
K_S_ZY
]
*
rot_new
[
K_F_YY
]
+
str_ten
[
K_S_ZZ
]
*
rot_new
[
K_F_ZY
];
t
[
6
]
=
str_ten
[
K_S_XX
]
*
rot_new
[
K_F_XZ
]
+
str_ten
[
K_S_XY
]
*
rot_new
[
K_F_YZ
]
+
str_ten
[
K_S_XZ
]
*
rot_new
[
K_F_ZZ
];
t
[
7
]
=
str_ten
[
K_S_YX
]
*
rot_new
[
K_F_XZ
]
+
str_ten
[
K_S_YY
]
*
rot_new
[
K_F_YZ
]
+
str_ten
[
K_S_YZ
]
*
rot_new
[
K_F_ZZ
];
t
[
8
]
=
str_ten
[
K_S_ZX
]
*
rot_new
[
K_F_XZ
]
+
str_ten
[
K_S_ZY
]
*
rot_new
[
K_F_YZ
]
+
str_ten
[
K_S_ZZ
]
*
rot_new
[
K_F_ZZ
];
rot_str
[
K_S_XX
]
=
rot_new
[
K_F_XX
]
*
t
[
0
]
+
rot_new
[
K_F_YX
]
*
t
[
1
]
+
rot_new
[
K_F_ZX
]
*
t
[
2
];
rot_str
[
K_S_YY
]
=
rot_new
[
K_F_XY
]
*
t
[
3
]
+
rot_new
[
K_F_YY
]
*
t
[
4
]
+
rot_new
[
K_F_ZY
]
*
t
[
5
];
rot_str
[
K_S_ZZ
]
=
rot_new
[
K_F_XZ
]
*
t
[
6
]
+
rot_new
[
K_F_YZ
]
*
t
[
7
]
+
rot_new
[
K_F_ZZ
]
*
t
[
8
];
rot_str
[
K_S_XY
]
=
rot_new
[
K_F_XX
]
*
t
[
3
]
+
rot_new
[
K_F_YX
]
*
t
[
4
]
+
rot_new
[
K_F_ZX
]
*
t
[
5
];
rot_str
[
K_S_YZ
]
=
rot_new
[
K_F_XY
]
*
t
[
6
]
+
rot_new
[
K_F_YY
]
*
t
[
7
]
+
rot_new
[
K_F_ZY
]
*
t
[
8
];
rot_str
[
K_S_ZX
]
=
rot_new
[
K_F_XZ
]
*
t
[
0
]
+
rot_new
[
K_F_YZ
]
*
t
[
1
]
+
rot_new
[
K_F_ZZ
]
*
t
[
2
];
for
(
int
i
=
0
;
i
<
6
;
++
i
)
{
rot_stretch
(
ielem
,
i
)
=
rot_str
[
i
]
;
}
for
(
int
i
=
0
;
i
<
6
;
++
i
)
{
stretch
(
ielem
,
i
)
=
str
[
i
]
;
}
}
KOKKOS_INLINE_FUNCTION
void
operator
()(
int
ielem
)
const
{
// Local scratch space to avoid multiple
// accesses to global memory.
Scalar
str_ten
[
6
];
// Stretching tensor
Scalar
str
[
6
];
// Stretch
Scalar
rot_old
[
9
];
// Rotation old
Scalar
rot_new
[
9
];
// Rotation new
Scalar
vort
[
3
];
// Vorticity
Scalar
v_gr
[
9
];
// Velocity gradient
additive_decomp
(
ielem
,
v_gr
,
str_ten
);
polar_decomp
(
ielem
,
v_gr
,
str_ten
,
str
,
vort
,
rot_old
,
rot_new
);
rotate_tensor
(
ielem
,
str_ten
,
str
,
rot_new
);
}
};
//----------------------------------------------------------------------------
template
<
typename
Scalar
,
class
DeviceType
>
struct
internal_force
{
typedef
DeviceType
execution_space
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
static
const
int
ElemNodeCount
=
Fields
::
ElemNodeCount
;
static
const
int
K_F_XX
=
Fields
::
K_F_XX
;
static
const
int
K_F_YY
=
Fields
::
K_F_YY
;
static
const
int
K_F_ZZ
=
Fields
::
K_F_ZZ
;
static
const
int
K_F_XY
=
Fields
::
K_F_XY
;
static
const
int
K_F_YZ
=
Fields
::
K_F_YZ
;
static
const
int
K_F_ZX
=
Fields
::
K_F_ZX
;
static
const
int
K_F_YX
=
Fields
::
K_F_YX
;
static
const
int
K_F_ZY
=
Fields
::
K_F_ZY
;
static
const
int
K_F_XZ
=
Fields
::
K_F_XZ
;
static
const
int
K_S_XX
=
Fields
::
K_S_XX
;
static
const
int
K_S_YY
=
Fields
::
K_S_YY
;
static
const
int
K_S_ZZ
=
Fields
::
K_S_ZZ
;
static
const
int
K_S_XY
=
Fields
::
K_S_XY
;
static
const
int
K_S_YZ
=
Fields
::
K_S_YZ
;
static
const
int
K_S_ZX
=
Fields
::
K_S_ZX
;
static
const
int
K_S_YX
=
Fields
::
K_S_YX
;
static
const
int
K_S_ZY
=
Fields
::
K_S_ZY
;
static
const
int
K_S_XZ
=
Fields
::
K_S_XZ
;
//--------------------------------------------------------------------------
// Reduction:
typedef
Scalar
value_type
;
KOKKOS_INLINE_FUNCTION
static
void
init
(
value_type
&
update
)
{
update
=
1.0e32
;
}
KOKKOS_INLINE_FUNCTION
static
void
join
(
volatile
value_type
&
update
,
const
volatile
value_type
&
source
)
{
update
=
update
<
source
?
update
:
source
;
}
// Final serial processing of reduction value:
KOKKOS_INLINE_FUNCTION
void
final
(
value_type
&
result
)
const
{
*
prev_dt
=
*
dt
;
*
dt
=
result
;
};
//--------------------------------------------------------------------------
// Global arrays used by this functor.
const
typename
Fields
::
elem_node_ids_type
elem_node_connectivity
;
const
typename
Fields
::
node_coords_type
model_coords
;
const
typename
Fields
::
scalar_type
dt
;
const
typename
Fields
::
scalar_type
prev_dt
;
const
typename
Fields
::
geom_state_array_type
displacement
;
const
typename
Fields
::
geom_state_array_type
velocity
;
const
typename
Fields
::
array_type
elem_mass
;
const
typename
Fields
::
array_type
internal_energy
;
const
typename
Fields
::
elem_sym_tensor_type
stress_new
;
const
typename
Fields
::
elem_node_geom_type
element_force
;
const
typename
Fields
::
elem_tensor_state_type
rotation
;
const
typename
Fields
::
elem_sym_tensor_type
rot_stretch
;
const
Scalar
two_mu
;
const
Scalar
bulk_modulus
;
const
Scalar
lin_bulk_visc
;
const
Scalar
quad_bulk_visc
;
const
Scalar
user_dt
;
const
int
current_state
;
internal_force
(
const
Fields
&
mesh_fields
,
const
Scalar
arg_user_dt
,
const
int
arg_current_state
)
:
elem_node_connectivity
(
mesh_fields
.
elem_node_connectivity
)
,
model_coords
(
mesh_fields
.
model_coords
)
,
dt
(
mesh_fields
.
dt
)
,
prev_dt
(
mesh_fields
.
prev_dt
)
,
displacement
(
mesh_fields
.
displacement
)
,
velocity
(
mesh_fields
.
velocity
)
,
elem_mass
(
mesh_fields
.
elem_mass
)
,
internal_energy
(
mesh_fields
.
internal_energy
)
,
stress_new
(
mesh_fields
.
stress_new
)
,
element_force
(
mesh_fields
.
element_force
)
,
rotation
(
mesh_fields
.
rotation
)
,
rot_stretch
(
mesh_fields
.
rot_stretch
)
,
two_mu
(
mesh_fields
.
two_mu
)
,
bulk_modulus
(
mesh_fields
.
bulk_modulus
)
,
lin_bulk_visc
(
mesh_fields
.
lin_bulk_visc
)
,
quad_bulk_visc
(
mesh_fields
.
quad_bulk_visc
)
,
user_dt
(
arg_user_dt
)
,
current_state
(
arg_current_state
)
{}
static
void
apply
(
const
Fields
&
mesh_fields
,
const
Scalar
arg_user_dt
,
const
int
arg_current_state
)
{
internal_force
op_force
(
mesh_fields
,
arg_user_dt
,
arg_current_state
);
Kokkos
::
parallel_reduce
(
mesh_fields
.
num_elements
,
op_force
);
}
//--------------------------------------------------------------------------
KOKKOS_INLINE_FUNCTION
void
rotate_tensor_backward
(
int
ielem
,
const
Scalar
*
const
s_n
,
Scalar
*
const
rot_stress
)
const
{
const
int
rot_state
=
current_state
;
// 1 ;
// t : temporary variables
// s_n : stress_new in local memory space
// r_n : rotation_new in local memory space
Scalar
t
[
9
],
r_n
[
9
];
r_n
[
0
]
=
rotation
(
ielem
,
0
,
rot_state
);
r_n
[
1
]
=
rotation
(
ielem
,
1
,
rot_state
);
r_n
[
2
]
=
rotation
(
ielem
,
2
,
rot_state
);
r_n
[
3
]
=
rotation
(
ielem
,
3
,
rot_state
);
r_n
[
4
]
=
rotation
(
ielem
,
4
,
rot_state
);
r_n
[
5
]
=
rotation
(
ielem
,
5
,
rot_state
);
r_n
[
6
]
=
rotation
(
ielem
,
6
,
rot_state
);
r_n
[
7
]
=
rotation
(
ielem
,
7
,
rot_state
);
r_n
[
8
]
=
rotation
(
ielem
,
8
,
rot_state
);
t
[
0
]
=
s_n
[
K_S_XX
]
*
r_n
[
K_F_XX
]
+
s_n
[
K_S_XY
]
*
r_n
[
K_F_XY
]
+
s_n
[
K_S_XZ
]
*
r_n
[
K_F_XZ
];
t
[
1
]
=
s_n
[
K_S_YX
]
*
r_n
[
K_F_XX
]
+
s_n
[
K_S_YY
]
*
r_n
[
K_F_XY
]
+
s_n
[
K_S_YZ
]
*
r_n
[
K_F_XZ
];
t
[
2
]
=
s_n
[
K_S_ZX
]
*
r_n
[
K_F_XX
]
+
s_n
[
K_S_ZY
]
*
r_n
[
K_F_XY
]
+
s_n
[
K_S_ZZ
]
*
r_n
[
K_F_XZ
];
t
[
3
]
=
s_n
[
K_S_XX
]
*
r_n
[
K_F_YX
]
+
s_n
[
K_S_XY
]
*
r_n
[
K_F_YY
]
+
s_n
[
K_S_XZ
]
*
r_n
[
K_F_YZ
];
t
[
4
]
=
s_n
[
K_S_YX
]
*
r_n
[
K_F_YX
]
+
s_n
[
K_S_YY
]
*
r_n
[
K_F_YY
]
+
s_n
[
K_S_YZ
]
*
r_n
[
K_F_YZ
];
t
[
5
]
=
s_n
[
K_S_ZX
]
*
r_n
[
K_F_YX
]
+
s_n
[
K_S_ZY
]
*
r_n
[
K_F_YY
]
+
s_n
[
K_S_ZZ
]
*
r_n
[
K_F_YZ
];
t
[
6
]
=
s_n
[
K_S_XX
]
*
r_n
[
K_F_ZX
]
+
s_n
[
K_S_XY
]
*
r_n
[
K_F_ZY
]
+
s_n
[
K_S_XZ
]
*
r_n
[
K_F_ZZ
];
t
[
7
]
=
s_n
[
K_S_YX
]
*
r_n
[
K_F_ZX
]
+
s_n
[
K_S_YY
]
*
r_n
[
K_F_ZY
]
+
s_n
[
K_S_YZ
]
*
r_n
[
K_F_ZZ
];
t
[
8
]
=
s_n
[
K_S_ZX
]
*
r_n
[
K_F_ZX
]
+
s_n
[
K_S_ZY
]
*
r_n
[
K_F_ZY
]
+
s_n
[
K_S_ZZ
]
*
r_n
[
K_F_ZZ
];
rot_stress
[
K_S_XX
]
=
r_n
[
K_F_XX
]
*
t
[
0
]
+
r_n
[
K_F_XY
]
*
t
[
1
]
+
r_n
[
K_F_XZ
]
*
t
[
2
];
rot_stress
[
K_S_YY
]
=
r_n
[
K_F_YX
]
*
t
[
3
]
+
r_n
[
K_F_YY
]
*
t
[
4
]
+
r_n
[
K_F_YZ
]
*
t
[
5
];
rot_stress
[
K_S_ZZ
]
=
r_n
[
K_F_ZX
]
*
t
[
6
]
+
r_n
[
K_F_ZY
]
*
t
[
7
]
+
r_n
[
K_F_ZZ
]
*
t
[
8
];
rot_stress
[
K_S_XY
]
=
r_n
[
K_F_XX
]
*
t
[
3
]
+
r_n
[
K_F_XY
]
*
t
[
4
]
+
r_n
[
K_F_XZ
]
*
t
[
5
];
rot_stress
[
K_S_YZ
]
=
r_n
[
K_F_YX
]
*
t
[
6
]
+
r_n
[
K_F_YY
]
*
t
[
7
]
+
r_n
[
K_F_YZ
]
*
t
[
8
];
rot_stress
[
K_S_ZX
]
=
r_n
[
K_F_ZX
]
*
t
[
0
]
+
r_n
[
K_F_ZY
]
*
t
[
1
]
+
r_n
[
K_F_ZZ
]
*
t
[
2
];
}
//--------------------------------------------------------------------------
KOKKOS_INLINE_FUNCTION
void
comp_force
(
int
ielem
,
const
Scalar
*
const
vx
,
const
Scalar
*
const
vy
,
const
Scalar
*
const
vz
,
const
Scalar
*
const
grad_x
,
const
Scalar
*
const
grad_y
,
const
Scalar
*
const
grad_z
,
Scalar
*
total_stress12th
)
const
{
Scalar
internal_energy_inc
=
0
;
for
(
int
inode
=
0
;
inode
<
8
;
++
inode
)
{
const
Scalar
fx
=
total_stress12th
[
K_S_XX
]
*
grad_x
[
inode
]
+
total_stress12th
[
K_S_XY
]
*
grad_y
[
inode
]
+
total_stress12th
[
K_S_XZ
]
*
grad_z
[
inode
]
;
element_force
(
ielem
,
0
,
inode
)
=
fx
;
const
Scalar
fy
=
total_stress12th
[
K_S_YX
]
*
grad_x
[
inode
]
+
total_stress12th
[
K_S_YY
]
*
grad_y
[
inode
]
+
total_stress12th
[
K_S_YZ
]
*
grad_z
[
inode
]
;
element_force
(
ielem
,
1
,
inode
)
=
fy
;
const
Scalar
fz
=
total_stress12th
[
K_S_ZX
]
*
grad_x
[
inode
]
+
total_stress12th
[
K_S_ZY
]
*
grad_y
[
inode
]
+
total_stress12th
[
K_S_ZZ
]
*
grad_z
[
inode
]
;
element_force
(
ielem
,
2
,
inode
)
=
fz
;
internal_energy_inc
+=
fx
*
vx
[
inode
]
+
fy
*
vy
[
inode
]
+
fz
*
vz
[
inode
]
;
}
internal_energy
(
ielem
)
=
internal_energy_inc
;
}
//----------------------------------------------------------------------------
KOKKOS_INLINE_FUNCTION
void
get_stress
(
int
ielem
,
Scalar
*
const
s_n
)
const
{
const
int
kxx
=
0
;
const
int
kyy
=
1
;
const
int
kzz
=
2
;
const
int
kxy
=
3
;
const
int
kyz
=
4
;
const
int
kzx
=
5
;
const
Scalar
e
=
(
rot_stretch
(
ielem
,
kxx
)
+
rot_stretch
(
ielem
,
kyy
)
+
rot_stretch
(
ielem
,
kzz
))
/
3.0
;
s_n
[
kxx
]
=
stress_new
(
ielem
,
kxx
)
+=
*
dt
*
(
two_mu
*
(
rot_stretch
(
ielem
,
kxx
)
-
e
)
+
3
*
bulk_modulus
*
e
);
s_n
[
kyy
]
=
stress_new
(
ielem
,
kyy
)
+=
*
dt
*
(
two_mu
*
(
rot_stretch
(
ielem
,
kyy
)
-
e
)
+
3
*
bulk_modulus
*
e
);
s_n
[
kzz
]
=
stress_new
(
ielem
,
kzz
)
+=
*
dt
*
(
two_mu
*
(
rot_stretch
(
ielem
,
kzz
)
-
e
)
+
3
*
bulk_modulus
*
e
);
s_n
[
kxy
]
=
stress_new
(
ielem
,
kxy
)
+=
*
dt
*
two_mu
*
rot_stretch
(
ielem
,
kxy
);
s_n
[
kyz
]
=
stress_new
(
ielem
,
kyz
)
+=
*
dt
*
two_mu
*
rot_stretch
(
ielem
,
kyz
);
s_n
[
kzx
]
=
stress_new
(
ielem
,
kzx
)
+=
*
dt
*
two_mu
*
rot_stretch
(
ielem
,
kzx
);
}
//----------------------------------------------------------------------------
KOKKOS_INLINE_FUNCTION
void
operator
()(
int
ielem
,
value_type
&
update
)
const
{
const
Scalar
ONE12TH
=
1.0
/
12.0
;
Scalar
x
[
8
],
y
[
8
],
z
[
8
]
;
Scalar
vx
[
8
],
vy
[
8
],
vz
[
8
];
Scalar
grad_x
[
8
],
grad_y
[
8
],
grad_z
[
8
];
// Position and velocity:
for
(
int
i
=
0
;
i
<
ElemNodeCount
;
++
i
)
{
const
int
n
=
elem_node_connectivity
(
ielem
,
i
);
x
[
i
]
=
model_coords
(
n
,
0
)
+
displacement
(
n
,
0
,
current_state
)
;
y
[
i
]
=
model_coords
(
n
,
1
)
+
displacement
(
n
,
1
,
current_state
)
;
z
[
i
]
=
model_coords
(
n
,
2
)
+
displacement
(
n
,
2
,
current_state
)
;
vx
[
i
]
=
velocity
(
n
,
0
,
current_state
);
vy
[
i
]
=
velocity
(
n
,
1
,
current_state
);
vz
[
i
]
=
velocity
(
n
,
2
,
current_state
);
}
// Gradient:
comp_grad
<
Scalar
,
execution_space
>
(
x
,
y
,
z
,
grad_x
,
grad_y
,
grad_z
);
const
Scalar
mid_vol
=
dot8
<
Scalar
,
execution_space
>
(
x
,
grad_x
);
const
Scalar
shr
=
two_mu
;
const
Scalar
dil
=
bulk_modulus
+
((
2.0
*
shr
)
/
3.0
);
const
Scalar
aspect
=
6.0
*
mid_vol
/
(
dot8
<
Scalar
,
execution_space
>
(
grad_x
,
grad_x
)
+
dot8
<
Scalar
,
execution_space
>
(
grad_y
,
grad_y
)
+
dot8
<
Scalar
,
execution_space
>
(
grad_z
,
grad_z
)
);
const
Scalar
dtrial
=
sqrt
(
elem_mass
(
ielem
)
*
aspect
/
dil
);
const
Scalar
traced
=
(
rot_stretch
(
ielem
,
0
)
+
rot_stretch
(
ielem
,
1
)
+
rot_stretch
(
ielem
,
2
));
const
Scalar
eps
=
traced
<
0
?
(
lin_bulk_visc
-
quad_bulk_visc
*
traced
*
dtrial
)
:
lin_bulk_visc
;
const
Scalar
bulkq
=
eps
*
dil
*
dtrial
*
traced
;
Scalar
cur_time_step
=
dtrial
*
(
sqrt
(
1.0
+
eps
*
eps
)
-
eps
);
// force fixed time step if input
cur_time_step
=
user_dt
>
0
?
user_dt
:
cur_time_step
;
update
=
update
<
cur_time_step
?
update
:
cur_time_step
;
Scalar
s_n
[
6
];
get_stress
(
ielem
,
s_n
);
Scalar
total_stress12th
[
6
];
// Get rotated stress:
rotate_tensor_backward
(
ielem
,
s_n
,
total_stress12th
);
total_stress12th
[
0
]
=
ONE12TH
*
(
total_stress12th
[
0
]
+
bulkq
);
total_stress12th
[
1
]
=
ONE12TH
*
(
total_stress12th
[
1
]
+
bulkq
);
total_stress12th
[
2
]
=
ONE12TH
*
(
total_stress12th
[
2
]
+
bulkq
);
total_stress12th
[
3
]
=
ONE12TH
*
(
total_stress12th
[
3
]
);
total_stress12th
[
4
]
=
ONE12TH
*
(
total_stress12th
[
4
]
);
total_stress12th
[
5
]
=
ONE12TH
*
(
total_stress12th
[
5
]
);
comp_force
(
ielem
,
vx
,
vy
,
vz
,
grad_x
,
grad_y
,
grad_z
,
total_stress12th
);
}
};
//----------------------------------------------------------------------------
template
<
typename
Scalar
,
class
DeviceType
>
struct
nodal_step
{
typedef
DeviceType
execution_space
;
typedef
typename
execution_space
::
size_type
size_type
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
const
typename
Fields
::
scalar_type
dt
;
const
typename
Fields
::
scalar_type
prev_dt
;
const
typename
Fields
::
node_elem_ids_type
node_elem_connectivity
;
const
typename
Fields
::
node_coords_type
model_coords
;
const
typename
Fields
::
array_type
nodal_mass
;
const
typename
Fields
::
geom_state_array_type
displacement
;
const
typename
Fields
::
geom_state_array_type
velocity
;
const
typename
Fields
::
geom_array_type
acceleration
;
const
typename
Fields
::
geom_array_type
internal_force
;
const
typename
Fields
::
elem_node_geom_type
element_force
;
const
Scalar
x_bc
;
const
int
current_state
;
const
int
next_state
;
nodal_step
(
const
Fields
&
mesh_fields
,
const
Scalar
arg_x_bc
,
const
int
arg_current_state
,
const
int
arg_next_state
)
:
dt
(
mesh_fields
.
dt
)
,
prev_dt
(
mesh_fields
.
prev_dt
)
,
node_elem_connectivity
(
mesh_fields
.
node_elem_connectivity
)
,
model_coords
(
mesh_fields
.
model_coords
)
,
nodal_mass
(
mesh_fields
.
nodal_mass
)
,
displacement
(
mesh_fields
.
displacement
)
,
velocity
(
mesh_fields
.
velocity
)
,
acceleration
(
mesh_fields
.
acceleration
)
,
internal_force
(
mesh_fields
.
internal_force
)
,
element_force
(
mesh_fields
.
element_force
)
,
x_bc
(
arg_x_bc
)
,
current_state
(
arg_current_state
)
,
next_state
(
arg_next_state
)
{
//std::cout << "finish_step dt: " << dt << std::endl;
//std::cout << "finish_step prev_dt: " << prev_dt << std::endl;
}
static
void
apply
(
const
Fields
&
mesh_fields
,
const
Scalar
arg_x_bc
,
const
int
arg_current_state
,
const
int
arg_next_state
)
{
nodal_step
op
(
mesh_fields
,
arg_x_bc
,
arg_current_state
,
arg_next_state
);
// Only update the owned nodes:
Kokkos
::
parallel_for
(
mesh_fields
.
num_nodes_owned
,
op
);
}
KOKKOS_INLINE_FUNCTION
void
operator
()(
int
inode
)
const
{
// Getting count as per 'CSR-like' data structure
const
int
begin
=
node_elem_connectivity
.
row_map
[
inode
];
const
int
end
=
node_elem_connectivity
.
row_map
[
inode
+
1
];
double
local_force
[]
=
{
0.0
,
0.0
,
0.0
};
// Gather-sum internal force from
// each element that a node is attached to.
for
(
int
i
=
begin
;
i
<
end
;
++
i
){
// node_elem_offset is a cumulative structure, so
// node_elem_offset(inode) should be the index where
// a particular row's elem_IDs begin
const
int
nelem
=
node_elem_connectivity
.
entries
(
i
,
0
);
// find the row in an element's stiffness matrix
// that corresponds to inode
const
int
elem_node_index
=
node_elem_connectivity
.
entries
(
i
,
1
);
local_force
[
0
]
+=
element_force
(
nelem
,
0
,
elem_node_index
);
local_force
[
1
]
+=
element_force
(
nelem
,
1
,
elem_node_index
);
local_force
[
2
]
+=
element_force
(
nelem
,
2
,
elem_node_index
);
}
internal_force
(
inode
,
0
)
=
local_force
[
0
];
internal_force
(
inode
,
1
)
=
local_force
[
1
];
internal_force
(
inode
,
2
)
=
local_force
[
2
];
// Acceleration:
Scalar
v_new
[
3
];
Scalar
a_current
[
3
];
const
Scalar
tol
=
1.0e-7
;
// If not on the boundary then: a = F / m
if
(
tol
<
fabs
(
model_coords
(
inode
,
0
)
-
x_bc
)
)
{
const
Scalar
m
=
nodal_mass
(
inode
);
acceleration
(
inode
,
0
)
=
a_current
[
0
]
=
-
local_force
[
0
]
/
m
;
acceleration
(
inode
,
1
)
=
a_current
[
1
]
=
-
local_force
[
1
]
/
m
;
acceleration
(
inode
,
2
)
=
a_current
[
2
]
=
-
local_force
[
2
]
/
m
;
}
else
{
//enforce fixed BC
acceleration
(
inode
,
0
)
=
a_current
[
0
]
=
0
;
acceleration
(
inode
,
1
)
=
a_current
[
1
]
=
0
;
acceleration
(
inode
,
2
)
=
a_current
[
2
]
=
0
;
}
// Central difference time integration:
const
Scalar
dt_disp
=
*
dt
;
const
Scalar
dt_vel
=
(
*
dt
+
*
prev_dt
)
/
2.0
;
velocity
(
inode
,
0
,
next_state
)
=
v_new
[
0
]
=
velocity
(
inode
,
0
,
current_state
)
+
dt_vel
*
a_current
[
0
];
velocity
(
inode
,
1
,
next_state
)
=
v_new
[
1
]
=
velocity
(
inode
,
1
,
current_state
)
+
dt_vel
*
a_current
[
1
];
velocity
(
inode
,
2
,
next_state
)
=
v_new
[
2
]
=
velocity
(
inode
,
2
,
current_state
)
+
dt_vel
*
a_current
[
2
];
displacement
(
inode
,
0
,
next_state
)
=
displacement
(
inode
,
0
,
current_state
)
+
dt_disp
*
v_new
[
0
];
displacement
(
inode
,
1
,
next_state
)
=
displacement
(
inode
,
1
,
current_state
)
+
dt_disp
*
v_new
[
1
];
displacement
(
inode
,
2
,
next_state
)
=
displacement
(
inode
,
2
,
current_state
)
+
dt_disp
*
v_new
[
2
];
}
};
//----------------------------------------------------------------------------
template
<
typename
Scalar
,
class
DeviceType
>
struct
pack_state
{
typedef
DeviceType
execution_space
;
typedef
typename
execution_space
::
size_type
size_type
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
typedef
typename
Fields
::
geom_state_array_type
::
value_type
value_type
;
typedef
Kokkos
::
View
<
value_type
*
,
execution_space
>
buffer_type
;
static
const
unsigned
value_count
=
6
;
const
typename
Fields
::
geom_state_array_type
displacement
;
const
typename
Fields
::
geom_state_array_type
velocity
;
const
buffer_type
output
;
const
size_type
inode_base
;
const
size_type
state_next
;
pack_state
(
const
buffer_type
&
arg_output
,
const
Fields
&
mesh_fields
,
const
size_type
arg_begin
,
const
size_type
arg_state
)
:
displacement
(
mesh_fields
.
displacement
)
,
velocity
(
mesh_fields
.
velocity
)
,
output
(
arg_output
)
,
inode_base
(
arg_begin
)
,
state_next
(
arg_state
)
{}
static
void
apply
(
const
buffer_type
&
arg_output
,
const
size_type
arg_begin
,
const
size_type
arg_count
,
const
Fields
&
mesh_fields
,
const
size_type
arg_state
)
{
pack_state
op
(
arg_output
,
mesh_fields
,
arg_begin
,
arg_state
);
Kokkos
::
parallel_for
(
arg_count
,
op
);
}
KOKKOS_INLINE_FUNCTION
void
operator
()(
const
size_type
i
)
const
{
const
size_type
inode
=
inode_base
+
i
;
size_type
j
=
i
*
value_count
;
output
[
j
++
]
=
displacement
(
inode
,
0
,
state_next
);
output
[
j
++
]
=
displacement
(
inode
,
1
,
state_next
);
output
[
j
++
]
=
displacement
(
inode
,
2
,
state_next
);
output
[
j
++
]
=
velocity
(
inode
,
0
,
state_next
);
output
[
j
++
]
=
velocity
(
inode
,
1
,
state_next
);
output
[
j
++
]
=
velocity
(
inode
,
2
,
state_next
);
}
};
template
<
typename
Scalar
,
class
DeviceType
>
struct
unpack_state
{
typedef
DeviceType
execution_space
;
typedef
typename
execution_space
::
size_type
size_type
;
typedef
Explicit
::
Fields
<
Scalar
,
execution_space
>
Fields
;
typedef
typename
Fields
::
geom_state_array_type
::
value_type
value_type
;
typedef
Kokkos
::
View
<
value_type
*
,
execution_space
>
buffer_type
;
static
const
unsigned
value_count
=
6
;
const
typename
Fields
::
geom_state_array_type
displacement
;
const
typename
Fields
::
geom_state_array_type
velocity
;
const
buffer_type
input
;
const
size_type
inode_base
;
const
size_type
state_next
;
unpack_state
(
const
buffer_type
&
arg_input
,
const
Fields
&
mesh_fields
,
const
size_type
arg_begin
,
const
size_type
arg_state
)
:
displacement
(
mesh_fields
.
displacement
)
,
velocity
(
mesh_fields
.
velocity
)
,
input
(
arg_input
)
,
inode_base
(
arg_begin
)
,
state_next
(
arg_state
)
{}
static
void
apply
(
const
Fields
&
mesh_fields
,
const
size_type
arg_state
,
const
buffer_type
&
arg_input
,
const
size_type
arg_begin
,
const
size_type
arg_count
)
{
unpack_state
op
(
arg_input
,
mesh_fields
,
arg_begin
,
arg_state
);
Kokkos
::
parallel_for
(
arg_count
,
op
);
}
KOKKOS_INLINE_FUNCTION
void
operator
()(
const
size_type
i
)
const
{
const
size_type
inode
=
inode_base
+
i
;
size_type
j
=
i
*
value_count
;
displacement
(
inode
,
0
,
state_next
)
=
input
[
j
++
]
;
displacement
(
inode
,
1
,
state_next
)
=
input
[
j
++
]
;
displacement
(
inode
,
2
,
state_next
)
=
input
[
j
++
]
;
velocity
(
inode
,
0
,
state_next
)
=
input
[
j
++
]
;
velocity
(
inode
,
1
,
state_next
)
=
input
[
j
++
]
;
velocity
(
inode
,
2
,
state_next
)
=
input
[
j
++
]
;
}
};
}
/* namespace Explicit */
#endif
/* #ifndef KOKKOS_EXPLICITFUNCTORS_HPP */
Event Timeline
Log In to Comment