Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94204111
integrator_gauss.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 17:24
Size
7 KB
Mime Type
text/x-c++
Expires
Fri, Dec 6, 17:24 (1 d, 15 h)
Engine
blob
Format
Raw Data
Handle
22752475
Attached To
rAKA akantu
integrator_gauss.hh
View Options
/**
* Copyright (©) 2010-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "integrator.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_INTEGRATOR_GAUSS_HH_
#define AKANTU_INTEGRATOR_GAUSS_HH_
namespace
akantu
{
namespace
integrator
{
namespace
details
{
template
<
ElementKind
>
struct
GaussIntegratorComputeJacobiansHelper
;
}
// namespace details
}
// namespace integrator
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
,
class
IntegrationOrderFunctor
>
class
IntegratorGauss
:
public
Integrator
{
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public
:
IntegratorGauss
(
const
Mesh
&
mesh
,
Int
spatial_dimension
,
const
ID
&
id
=
"integrator_gauss"
);
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public
:
void
initIntegrator
(
const
Array
<
Real
>
&
nodes
,
ElementType
type
,
GhostType
ghost_type
);
template
<
ElementType
type
>
inline
void
initIntegrator
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
);
/// integrate f on the element "elem" of type "type"
template
<
ElementType
type
>
inline
void
integrateOnElement
(
const
Array
<
Real
>
&
f
,
Real
*
intf
,
Int
nb_degree_of_freedom
,
Idx
elem
,
GhostType
ghost_type
)
const
;
/// integrate f for all elements of type "type"
template
<
ElementType
type
>
void
integrate
(
const
Array
<
Real
>
&
in_f
,
Array
<
Real
>
&
intf
,
Int
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
;
/// integrate scalar field in_f
template
<
ElementType
type
,
Int
polynomial_degree
>
[[
nodiscard
]]
Real
integrate
(
const
Array
<
Real
>
&
in_f
,
GhostType
ghost_type
=
_not_ghost
)
const
;
/// integrate partially around a quadrature point (@f$ intf_q = f_q * J_q *
/// w_q @f$)
template
<
ElementType
type
>
[[
nodiscard
]]
Real
integrate
(
const
Vector
<
Real
>
&
in_f
,
Idx
index
,
GhostType
ghost_type
)
const
;
/// integrate scalar field in_f
template
<
ElementType
type
>
[[
nodiscard
]]
Real
integrate
(
const
Array
<
Real
>
&
in_f
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
;
/// integrate a field without using the pre-computed values
template
<
ElementType
type
,
Int
polynomial_degree
>
void
integrate
(
const
Array
<
Real
>
&
in_f
,
Array
<
Real
>
&
intf
,
Int
nb_degree_of_freedom
,
GhostType
ghost_type
)
const
;
/// return a matrix with quadrature points natural coordinates
template
<
ElementType
type
>
[[
nodiscard
]]
const
Matrix
<
Real
>
&
getIntegrationPoints
(
GhostType
ghost_type
)
const
;
/// return number of quadrature points
template
<
ElementType
type
>
[[
nodiscard
]]
Int
getNbIntegrationPoints
(
GhostType
ghost_type
)
const
;
template
<
ElementType
type
>
[[
nodiscard
]]
Int
getNbIntegrationPoints
(
GhostType
ghost_type
);
template
<
ElementType
type
,
Int
n
>
[[
nodiscard
]]
Matrix
<
Real
>
getIntegrationPoints
()
const
;
template
<
ElementType
type
,
Int
n
>
[[
nodiscard
]]
Vector
<
Real
>
getIntegrationWeights
()
const
;
protected
:
friend
struct
integrator
::
details
::
GaussIntegratorComputeJacobiansHelper
<
kind
>
;
template
<
ElementType
type
>
void
computeJacobiansOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
quad_points
,
Array
<
Real
>
&
jacobians
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
=
empty_filter
)
const
;
void
computeJacobiansOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
quad_points
,
Array
<
Real
>
&
jacobians
,
ElementType
type
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
=
empty_filter
)
const
;
/// precompute jacobians on elements of type "type"
template
<
ElementType
type
>
void
precomputeJacobiansOnQuadraturePoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
);
// multiply the jacobians by the integration weights and stores the results in
// jacobians
template
<
ElementType
type
,
Int
polynomial_degree
>
void
multiplyJacobiansByWeights
(
Array
<
Real
>
&
jacobians
,
const
Array
<
Idx
>
&
filter_elements
=
empty_filter
)
const
;
/// compute the vector of quadrature points natural coordinates
template
<
ElementType
type
>
void
computeQuadraturePoints
(
GhostType
ghost_type
);
/// check that the jacobians are not negative
template
<
ElementType
type
>
void
checkJacobians
(
GhostType
ghost_type
)
const
;
void
integrate
(
const
Array
<
Real
>
&
in_f
,
Array
<
Real
>
&
intf
,
Int
nb_degree_of_freedom
,
const
Array
<
Real
>
&
jacobians
,
Int
nb_element
)
const
;
public
:
/// compute the jacobians on quad points for a given element
template
<
ElementType
type
,
class
D1
,
class
D2
,
class
D3
>
inline
void
computeJacobianOnQuadPointsByElement
(
const
Eigen
::
MatrixBase
<
D1
>
&
node_coords
,
const
Eigen
::
MatrixBase
<
D2
>
&
quad
,
Eigen
::
MatrixBase
<
D3
>
&
jacobians
)
const
;
public
:
void
onElementsAdded
(
const
Array
<
Element
>
&
elements
)
override
;
protected
:
template
<
ElementType
type
>
void
onElementsAddedByType
(
const
Array
<
Idx
>
&
new_elements
,
GhostType
ghost_type
);
decltype
(
auto
)
getIntegrationPoints
()
{
return
(
quadrature_points
);
}
template
<
template
<
ElementKind
,
class
>
class
,
template
<
ElementKind
>
class
,
ElementKind
,
class
>
friend
class
FEEngineTemplate
;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected
:
/// integrate the field f with the jacobian jac -> inte
inline
void
integrate
(
const
Real
*
f
,
const
Real
*
jac
,
Real
*
inte
,
Int
nb_degree_of_freedom
,
Int
nb_quadrature_points
)
const
;
private
:
/// ElementTypeMap of the quadrature points
ElementTypeMap
<
Matrix
<
Real
>>
quadrature_points
;
};
}
// namespace akantu
#include "integrator_gauss_inline_impl.hh"
#endif
/* AKANTU_INTEGRATOR_GAUSS_HH_ */
Event Timeline
Log In to Comment