Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94210520
phase_field_parallel.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 18:47
Size
4 KB
Mime Type
text/x-c
Expires
Fri, Dec 6, 18:47 (1 d, 16 h)
Engine
blob
Format
Raw Data
Handle
22557556
Attached To
rAKA akantu
phase_field_parallel.cc
View Options
/**
* @file phase_field_parallel.cc
*
* @author Mohit Pundir <mohit.pundir@ethz.ch>
*
* @date creation: Mon May 09 2022
* @date last modification: Mon May 09 2022
*
* @brief Example of phase field model in parallel
*
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "communicator.hh"
#include "coupler_solid_phasefield.hh"
#include "group_manager.hh"
#include "non_linear_solver.hh"
#include "phase_field_model.hh"
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
#include <chrono>
#include <fstream>
#include <iostream>
/* -------------------------------------------------------------------------- */
using
namespace
akantu
;
using
clk
=
std
::
chrono
::
high_resolution_clock
;
using
second
=
std
::
chrono
::
duration
<
double
>
;
using
millisecond
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
;
const
UInt
spatial_dimension
=
2
;
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
"material_notch.dat"
,
argc
,
argv
);
// create mesh
Mesh
mesh
(
spatial_dimension
);
const
auto
&
comm
=
Communicator
::
getStaticCommunicator
();
Int
prank
=
comm
.
whoAmI
();
if
(
prank
==
0
)
{
// Read the mesh
mesh
.
read
(
"square_notch.msh"
);
}
mesh
.
distribute
();
CouplerSolidPhaseField
coupler
(
mesh
);
auto
&
model
=
coupler
.
getSolidMechanicsModel
();
auto
&
phase
=
coupler
.
getPhaseFieldModel
();
model
.
initFull
(
_analysis_method
=
_static
);
auto
&&
mat_selector
=
std
::
make_shared
<
MeshDataMaterialSelector
<
std
::
string
>>
(
"physical_names"
,
model
);
model
.
setMaterialSelector
(
mat_selector
);
auto
&&
selector
=
std
::
make_shared
<
MeshDataPhaseFieldSelector
<
std
::
string
>>
(
"physical_names"
,
phase
);
phase
.
setPhaseFieldSelector
(
selector
);
phase
.
initFull
(
_analysis_method
=
_static
);
model
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.
,
_y
),
"bottom"
);
model
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.
,
_x
),
"left"
);
model
.
setBaseName
(
"phase_notch_parallel"
);
model
.
addDumpField
(
"stress"
);
model
.
addDumpField
(
"grad_u"
);
model
.
addDumpFieldVector
(
"displacement"
);
model
.
addDumpField
(
"damage"
);
if
(
mesh
.
isDistributed
())
{
// phase.addDumpField("partitions");
}
phase
.
dump
();
UInt
nbSteps
=
1000
;
Real
increment
=
6e-6
;
UInt
nb_staggered_steps
=
5
;
auto
start_time
=
clk
::
now
();
for
(
UInt
s
=
1
;
s
<
nbSteps
;
++
s
)
{
if
(
s
>=
500
)
{
increment
=
2e-6
;
nb_staggered_steps
=
10
;
}
if
(
s
%
10
==
0
&&
prank
==
0
)
{
constexpr
char
wheel
[]
=
"/-
\\
|"
;
auto
elapsed
=
clk
::
now
()
-
start_time
;
auto
time_per_step
=
elapsed
/
s
;
std
::
cout
<<
"
\r
["
<<
wheel
[(
s
/
10
)
%
4
]
<<
"] "
<<
std
::
setw
(
5
)
<<
s
<<
"/"
<<
nbSteps
<<
" ("
<<
std
::
setprecision
(
2
)
<<
std
::
fixed
<<
std
::
setw
(
8
)
<<
millisecond
(
time_per_step
).
count
()
<<
"ms/step - elapsed: "
<<
std
::
setw
(
8
)
<<
second
(
elapsed
).
count
()
<<
"s - ETA: "
<<
std
::
setw
(
8
)
<<
second
((
nbSteps
-
s
)
*
time_per_step
).
count
()
<<
"s)"
<<
std
::
string
(
' '
,
20
)
<<
std
::
flush
;
}
model
.
applyBC
(
BC
::
Dirichlet
::
IncrementValue
(
increment
,
_y
),
"top"
);
for
(
UInt
i
=
0
;
i
<
nb_staggered_steps
;
++
i
)
{
coupler
.
solve
();
}
if
(
s
%
100
==
0
)
{
model
.
dump
();
}
}
finalize
();
return
EXIT_SUCCESS
;
}
Event Timeline
Log In to Comment