Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94210620
grid_synchronizer.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 18:48
Size
15 KB
Mime Type
text/x-c++
Expires
Fri, Dec 6, 18:48 (1 d, 16 h)
Engine
blob
Format
Raw Data
Handle
22454796
Attached To
rAKA akantu
grid_synchronizer.cc
View Options
/**
* Copyright (©) 2011-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "grid_synchronizer.hh"
#include "aka_grid_dynamic.hh"
#include "communicator.hh"
#include "fe_engine.hh"
#include "integration_point.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include <iostream>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
template
<
class
E
>
void
GridSynchronizer
::
createGridSynchronizer
(
const
SpatialGrid
<
E
>
&
grid
)
{
AKANTU_DEBUG_IN
();
const
auto
&
comm
=
this
->
mesh
.
getCommunicator
();
auto
nb_proc
=
comm
.
getNbProc
();
auto
my_rank
=
comm
.
whoAmI
();
if
(
nb_proc
==
1
)
{
return
;
}
auto
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
BBox
my_bounding_box
(
spatial_dimension
);
const
auto
&
lower
=
grid
.
getLowerBounds
();
const
auto
&
upper
=
grid
.
getUpperBounds
();
const
auto
&
spacing
=
grid
.
getSpacing
();
my_bounding_box
.
setLowerBounds
(
lower
-
spacing
);
my_bounding_box
.
setUpperBounds
(
upper
+
spacing
);
AKANTU_DEBUG_INFO
(
"Exchange of bounding box to detect the overlapping regions."
);
auto
&&
bboxes
=
my_bounding_box
.
allGather
(
comm
);
std
::
vector
<
bool
>
intersects_proc
(
nb_proc
);
std
::
fill
(
intersects_proc
.
begin
(),
intersects_proc
.
end
(),
true
);
Matrix
<
Int
>
first_cells
(
spatial_dimension
,
nb_proc
);
Matrix
<
Int
>
last_cells
(
spatial_dimension
,
nb_proc
);
std
::
map
<
Int
,
ElementTypeMapArray
<
Idx
>>
element_per_proc
;
// check the overlapping between my box and the one from other processors
for
(
Int
p
=
0
;
p
<
nb_proc
;
++
p
)
{
if
(
p
==
my_rank
)
{
continue
;
}
const
auto
&
proc_bounding_box
=
bboxes
[
p
];
auto
intersection
=
my_bounding_box
.
intersection
(
proc_bounding_box
);
auto
&&
first_cell_p
=
first_cells
(
p
);
auto
&&
last_cell_p
=
last_cells
(
p
);
intersects_proc
[
p
]
=
intersection
;
if
(
intersects_proc
[
p
])
{
for
(
Int
s
=
0
;
s
<
spatial_dimension
;
++
s
)
{
first_cell_p
(
s
)
=
grid
.
getCellID
(
intersection
.
getLowerBounds
()(
s
),
s
);
last_cell_p
(
s
)
=
grid
.
getCellID
(
intersection
.
getUpperBounds
()(
s
),
s
);
}
}
// create the list of cells in the overlapping
using
CellID
=
typename
SpatialGrid
<
E
>::
CellID
;
std
::
vector
<
CellID
>
cell_ids
;
if
(
intersects_proc
[
p
])
{
AKANTU_DEBUG_INFO
(
"I intersects with processor "
<<
p
);
CellID
cell_id
(
spatial_dimension
);
for
(
Int
fd
=
first_cell_p
(
0
);
fd
<=
last_cell_p
(
0
);
++
fd
)
{
cell_id
.
setID
(
0
,
fd
);
if
(
spatial_dimension
==
1
)
{
cell_ids
.
push_back
(
cell_id
);
}
else
{
for
(
Int
sd
=
first_cell_p
(
1
);
sd
<=
last_cell_p
(
1
);
++
sd
)
{
cell_id
.
setID
(
1
,
sd
);
if
(
spatial_dimension
==
2
)
{
cell_ids
.
push_back
(
cell_id
);
}
else
{
for
(
Int
ld
=
first_cell_p
(
2
);
ld
<=
last_cell_p
(
2
);
++
ld
)
{
cell_id
.
setID
(
2
,
ld
);
cell_ids
.
push_back
(
cell_id
);
}
}
}
}
}
// get the list of elements in the cells of the overlapping
std
::
set
<
Element
>
to_send
;
for
(
auto
&
cur_cell_id
:
cell_ids
)
{
auto
&
cell
=
grid
.
getCell
(
cur_cell_id
);
for
(
auto
&
element
:
cell
)
{
to_send
.
insert
(
element
);
}
}
AKANTU_DEBUG_INFO
(
"I have prepared "
<<
to_send
.
size
()
<<
" elements to send to processor "
<<
p
);
auto
&
scheme
=
this
->
getCommunications
().
createSendScheme
(
p
);
element_per_proc
.
emplace
(
std
::
piecewise_construct
,
std
::
forward_as_tuple
(
p
),
std
::
forward_as_tuple
(
std
::
string
(
"element_per_proc_"
+
std
::
to_string
(
p
)),
id
));
auto
&
elempproc
=
element_per_proc
[
p
];
for
(
auto
elem
:
to_send
)
{
auto
type
=
elem
.
type
;
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
// /!\ this part must be slow due to the access in the
// ElementTypeMapArray<Idx>
if
(
not
elempproc
.
exists
(
type
,
_not_ghost
))
{
elempproc
.
alloc
(
0
,
nb_nodes_per_element
,
type
,
_not_ghost
);
}
Vector
<
Idx
>
global_connect
(
nb_nodes_per_element
);
auto
&&
local_connect
=
mesh
.
getConnectivity
(
type
).
begin
(
nb_nodes_per_element
)[
elem
.
element
];
for
(
Int
i
=
0
;
i
<
nb_nodes_per_element
;
++
i
)
{
global_connect
(
i
)
=
mesh
.
getNodeGlobalId
(
local_connect
(
i
));
AKANTU_DEBUG_ASSERT
(
global_connect
(
i
)
<
mesh
.
getNbGlobalNodes
(),
"This global node send in the connectivity does not seem correct "
<<
global_connect
(
i
)
<<
" corresponding to "
<<
local_connect
(
i
)
<<
" from element "
<<
elem
.
element
);
}
elempproc
(
type
).
push_back
(
global_connect
);
scheme
.
push_back
(
elem
);
}
}
}
AKANTU_DEBUG_INFO
(
"I have finished to compute intersection,"
<<
" no it's time to communicate with my neighbors"
);
/**
* Sending loop, sends the connectivity asynchronously to all concerned proc
*/
std
::
vector
<
CommunicationRequest
>
isend_requests
;
Array
<
Int
>
space
(
0
,
2
);
space
.
reserve
(
nb_proc
*
Int
(
_max_element_type
));
for
(
Int
p
=
0
;
p
<
nb_proc
;
++
p
)
{
if
(
p
==
my_rank
)
{
continue
;
}
if
(
not
intersects_proc
[
p
])
{
continue
;
}
auto
&
elempproc
=
element_per_proc
[
p
];
Int
count
=
0
;
for
(
auto
type
:
elempproc
.
elementTypes
(
_all_dimensions
,
_not_ghost
))
{
const
auto
&
conn
=
elempproc
(
type
,
_not_ghost
);
space
.
push_back
(
Vector
<
Int
>
{
Int
(
type
),
conn
.
size
()
*
conn
.
getNbComponent
()});
VectorProxy
<
Int
>
info
(
space
.
data
()
+
2
*
(
space
.
size
()
-
1
),
2
);
AKANTU_DEBUG_INFO
(
"I have "
<<
conn
.
size
()
<<
" elements of type "
<<
type
<<
" to send to processor "
<<
p
<<
" (communication tag : "
<<
Tag
::
genTag
(
my_rank
,
count
,
DATA_TAG
)
<<
")"
);
isend_requests
.
push_back
(
comm
.
asyncSend
(
info
,
p
,
Tag
::
genTag
(
my_rank
,
count
,
SIZE_TAG
)));
if
(
info
[
1
]
!=
0
)
{
isend_requests
.
push_back
(
comm
.
asyncSend
(
conn
,
p
,
Tag
::
genTag
(
my_rank
,
count
,
DATA_TAG
)));
}
++
count
;
}
space
.
push_back
(
Vector
<
Int
>
{
Int
(
_not_defined
),
0
});
VectorProxy
<
Int
>
info
(
space
.
data
()
+
2
*
(
space
.
size
()
-
1
),
2
);
isend_requests
.
push_back
(
comm
.
asyncSend
(
info
,
p
,
Tag
::
genTag
(
my_rank
,
count
,
SIZE_TAG
)));
}
/**
* Receives the connectivity and store them in the ghosts elements
*/
MeshAccessor
mesh_accessor
(
mesh
);
auto
&
global_nodes_ids
=
mesh_accessor
.
getNodesGlobalIds
();
auto
&
nodes_type
=
mesh_accessor
.
getNodesFlags
();
std
::
vector
<
CommunicationRequest
>
isend_nodes_requests
;
Vector
<
Int
>
nb_nodes_to_recv
(
nb_proc
);
Int
nb_total_nodes_to_recv
=
0
;
Int
nb_current_nodes
=
global_nodes_ids
.
size
();
NewNodesEvent
new_nodes
;
NewElementsEvent
new_elements
;
std
::
map
<
Int
,
std
::
vector
<
Int
>>
ask_nodes_per_proc
;
for
(
Int
p
=
0
;
p
<
nb_proc
;
++
p
)
{
nb_nodes_to_recv
(
p
)
=
0
;
if
(
p
==
my_rank
)
{
continue
;
}
if
(
!
intersects_proc
[
p
])
{
continue
;
}
auto
&
scheme
=
this
->
getCommunications
().
createRecvScheme
(
p
);
ask_nodes_per_proc
.
emplace
(
std
::
piecewise_construct
,
std
::
forward_as_tuple
(
p
),
std
::
forward_as_tuple
(
0
));
auto
&
ask_nodes
=
ask_nodes_per_proc
[
p
];
Int
count
=
0
;
auto
type
=
_not_defined
;
do
{
Vector
<
Int
>
info
(
2
);
comm
.
receive
(
info
,
p
,
Tag
::
genTag
(
p
,
count
,
SIZE_TAG
));
type
=
(
ElementType
)
info
[
0
];
if
(
type
==
_not_defined
)
{
break
;
}
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
auto
nb_element
=
info
[
1
]
/
nb_nodes_per_element
;
Array
<
Idx
>
tmp_conn
(
nb_element
,
nb_nodes_per_element
);
if
(
info
[
1
]
!=
0
)
{
comm
.
receive
(
tmp_conn
,
p
,
Tag
::
genTag
(
p
,
count
,
DATA_TAG
));
}
AKANTU_DEBUG_INFO
(
"I will receive "
<<
nb_element
<<
" elements of type "
<<
ElementType
(
info
[
0
])
<<
" from processor "
<<
p
<<
" (communication tag : "
<<
Tag
::
genTag
(
p
,
count
,
DATA_TAG
)
<<
")"
);
auto
&
ghost_connectivity
=
mesh_accessor
.
getConnectivity
(
type
,
_ghost
);
auto
&
ghost_counter
=
mesh_accessor
.
getGhostsCounters
(
type
,
_ghost
);
auto
nb_ghost_element
=
ghost_connectivity
.
size
();
Element
element
{
type
,
0
,
_ghost
};
Vector
<
Idx
>
conn
(
nb_nodes_per_element
);
for
(
Int
el
=
0
;
el
<
nb_element
;
++
el
)
{
Int
nb_node_to_ask_for_elem
=
0
;
for
(
Int
n
=
0
;
n
<
nb_nodes_per_element
;
++
n
)
{
auto
gn
=
tmp_conn
(
el
,
n
);
auto
ln
=
global_nodes_ids
.
find
(
gn
);
AKANTU_DEBUG_ASSERT
(
gn
<
mesh
.
getNbGlobalNodes
(),
"This global node seems not correct "
<<
gn
<<
" from element "
<<
el
<<
" node "
<<
n
);
if
(
ln
==
-
1
)
{
global_nodes_ids
.
push_back
(
gn
);
nodes_type
.
push_back
(
NodeFlag
::
_pure_ghost
);
// pure ghost node
ln
=
nb_current_nodes
;
new_nodes
.
getList
().
push_back
(
ln
);
++
nb_current_nodes
;
ask_nodes
.
push_back
(
gn
);
++
nb_node_to_ask_for_elem
;
}
conn
[
n
]
=
ln
;
}
// all the nodes are already known locally, the element should
// already exists
Idx
c
=
-
1
;
if
(
nb_node_to_ask_for_elem
==
0
)
{
c
=
ghost_connectivity
.
find
(
conn
);
element
.
element
=
c
;
}
if
(
c
==
-
1
)
{
element
.
element
=
nb_ghost_element
;
++
nb_ghost_element
;
ghost_connectivity
.
push_back
(
conn
);
ghost_counter
.
push_back
(
1
);
new_elements
.
getList
().
push_back
(
element
);
}
else
{
++
ghost_counter
(
c
);
}
scheme
.
push_back
(
element
);
}
count
++
;
}
while
(
type
!=
_not_defined
);
AKANTU_DEBUG_INFO
(
"I have "
<<
ask_nodes
.
size
()
<<
" missing nodes for elements coming from processor "
<<
p
<<
" (communication tag : "
<<
Tag
::
genTag
(
my_rank
,
0
,
ASK_NODES_TAG
)
<<
")"
);
ask_nodes
.
push_back
(
-
1
);
isend_nodes_requests
.
push_back
(
comm
.
asyncSend
(
ask_nodes
,
p
,
Tag
::
genTag
(
my_rank
,
0
,
ASK_NODES_TAG
)));
nb_nodes_to_recv
(
p
)
=
ask_nodes
.
size
()
-
1
;
nb_total_nodes_to_recv
+=
nb_nodes_to_recv
(
p
);
}
Communicator
::
waitAll
(
isend_requests
);
Communicator
::
freeCommunicationRequest
(
isend_requests
);
/**
* Sends requested nodes to proc
*/
auto
&
nodes
=
mesh_accessor
.
getNodes
();
auto
nb_nodes
=
nodes
.
size
();
std
::
vector
<
CommunicationRequest
>
isend_coordinates_requests
;
std
::
map
<
Int
,
Array
<
Real
>>
nodes_to_send_per_proc
;
for
(
Int
p
=
0
;
p
<
nb_proc
;
++
p
)
{
if
(
p
==
my_rank
or
not
intersects_proc
[
p
])
{
continue
;
}
Array
<
Int
>
asked_nodes
;
CommunicationStatus
status
;
AKANTU_DEBUG_INFO
(
"Waiting list of nodes to send to processor "
<<
p
<<
"(communication tag : "
<<
Tag
::
genTag
(
p
,
0
,
ASK_NODES_TAG
)
<<
")"
);
comm
.
probe
<
Int
>
(
p
,
Tag
::
genTag
(
p
,
0
,
ASK_NODES_TAG
),
status
);
Int
nb_nodes_to_send
=
status
.
size
();
asked_nodes
.
resize
(
nb_nodes_to_send
);
AKANTU_DEBUG_INFO
(
"I have "
<<
nb_nodes_to_send
-
1
<<
" nodes to send to processor "
<<
p
<<
" (communication tag : "
<<
Tag
::
genTag
(
p
,
0
,
ASK_NODES_TAG
)
<<
")"
);
AKANTU_DEBUG_INFO
(
"Getting list of nodes to send to processor "
<<
p
<<
" (communication tag : "
<<
Tag
::
genTag
(
p
,
0
,
ASK_NODES_TAG
)
<<
")"
);
comm
.
receive
(
asked_nodes
,
p
,
Tag
::
genTag
(
p
,
0
,
ASK_NODES_TAG
));
nb_nodes_to_send
--
;
asked_nodes
.
resize
(
nb_nodes_to_send
);
nodes_to_send_per_proc
.
emplace
(
std
::
piecewise_construct
,
std
::
forward_as_tuple
(
p
),
std
::
forward_as_tuple
(
0
,
spatial_dimension
));
auto
&
nodes_to_send
=
nodes_to_send_per_proc
[
p
];
auto
node_it
=
nodes
.
begin
(
spatial_dimension
);
for
(
Int
n
=
0
;
n
<
nb_nodes_to_send
;
++
n
)
{
auto
ln
=
global_nodes_ids
.
find
(
asked_nodes
(
n
));
AKANTU_DEBUG_ASSERT
(
ln
!=
-
1
,
"The node ["
<<
asked_nodes
(
n
)
<<
"] requested by proc "
<<
p
<<
" was not found locally!"
);
nodes_to_send
.
push_back
(
node_it
[
ln
]);
}
if
(
nb_nodes_to_send
!=
0
)
{
AKANTU_DEBUG_INFO
(
"Sending the "
<<
nb_nodes_to_send
<<
" nodes to processor "
<<
p
<<
" (communication tag : "
<<
Tag
::
genTag
(
p
,
0
,
SEND_NODES_TAG
)
<<
")"
);
isend_coordinates_requests
.
push_back
(
comm
.
asyncSend
(
nodes_to_send
,
p
,
Tag
::
genTag
(
my_rank
,
0
,
SEND_NODES_TAG
)));
}
#if not defined(AKANTU_NDEBUG)
else
{
AKANTU_DEBUG_INFO
(
"No nodes to send to processor "
<<
p
);
}
#endif
}
Communicator
::
waitAll
(
isend_nodes_requests
);
Communicator
::
freeCommunicationRequest
(
isend_nodes_requests
);
nodes
.
resize
(
nb_total_nodes_to_recv
+
nb_nodes
);
for
(
Int
p
=
0
;
p
<
nb_proc
;
++
p
)
{
if
((
p
!=
my_rank
)
&&
(
nb_nodes_to_recv
(
p
)
>
0
))
{
AKANTU_DEBUG_INFO
(
"Receiving the "
<<
nb_nodes_to_recv
(
p
)
<<
" nodes from processor "
<<
p
<<
" (communication tag : "
<<
Tag
::
genTag
(
p
,
0
,
SEND_NODES_TAG
)
<<
")"
);
VectorProxy
<
Real
>
nodes_to_recv
(
nodes
.
data
()
+
nb_nodes
*
spatial_dimension
,
nb_nodes_to_recv
(
p
)
*
spatial_dimension
);
comm
.
receive
(
nodes_to_recv
,
p
,
Tag
::
genTag
(
p
,
0
,
SEND_NODES_TAG
));
nb_nodes
+=
nb_nodes_to_recv
(
p
);
}
#if not defined(AKANTU_NDEBUG)
else
{
if
(
p
!=
my_rank
)
{
AKANTU_DEBUG_INFO
(
"No nodes to receive from processor "
<<
p
);
}
}
#endif
}
Communicator
::
waitAll
(
isend_coordinates_requests
);
Communicator
::
freeCommunicationRequest
(
isend_coordinates_requests
);
mesh
.
sendEvent
(
new_nodes
);
mesh
.
sendEvent
(
new_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
void
GridSynchronizer
::
createGridSynchronizer
<
IntegrationPoint
>
(
const
SpatialGrid
<
IntegrationPoint
>
&
grid
);
template
void
GridSynchronizer
::
createGridSynchronizer
<
Element
>
(
const
SpatialGrid
<
Element
>
&
grid
);
}
// namespace akantu
Event Timeline
Log In to Comment