Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94224733
bernoulli_beam_2_example.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 21:53
Size
3 KB
Mime Type
text/x-c
Expires
Fri, Dec 6, 21:53 (1 d, 16 h)
Engine
blob
Format
Raw Data
Handle
22713839
Attached To
rAKA akantu
bernoulli_beam_2_example.cc
View Options
/**
* @file bernoulli_beam_2_exemple.cc
*
* @author Fabian Barras <fabian.barras@epfl.ch>
*
* @date creation: Mon Jan 18 2016
*
* @brief Computation of the analytical exemple 1.1 in the TGC vol 6
*
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "structural_mechanics_model.hh"
#include "mesh_accessor.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
/* -------------------------------------------------------------------------- */
#define TYPE _bernoulli_beam_2
using
namespace
akantu
;
/* -------------------------------------------------------------------------- */
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
argc
,
argv
);
// Defining the mesh
Mesh
beams
(
2
);
const
auto
q
=
6000.
;
const
auto
L
=
10.
;
const
auto
M
=
-
3600.
;
// Momentum at 3
auto
nb_nodes
=
3
;
auto
nb_element
=
nb_nodes
-
1
;
MeshAccessor
mesh_accessor
(
beams
);
Array
<
Real
>
&
nodes
=
mesh_accessor
.
getNodes
();
nodes
.
resize
(
nb_nodes
);
beams
.
addConnectivityType
(
_bernoulli_beam_2
);
Array
<
UInt
>
&
connectivity
=
mesh_accessor
.
getConnectivity
(
_bernoulli_beam_2
);
connectivity
.
resize
(
nb_element
);
nodes
.
zero
();
nodes
(
1
,
0
)
=
10
;
nodes
(
2
,
0
)
=
18
;
for
(
int
i
=
0
;
i
<
nb_element
;
++
i
)
{
connectivity
(
i
,
0
)
=
i
;
connectivity
(
i
,
1
)
=
i
+
1
;
}
mesh_accessor
.
makeReady
();
// Defining the materials
StructuralMechanicsModel
model
(
beams
);
StructuralMaterial
mat1
;
mat1
.
E
=
3e10
;
mat1
.
I
=
0.0025
;
mat1
.
A
=
0.01
;
model
.
addMaterial
(
mat1
);
StructuralMaterial
mat2
;
mat2
.
E
=
3e10
;
mat2
.
I
=
0.00128
;
mat2
.
A
=
0.01
;
model
.
addMaterial
(
mat2
);
// Defining the forces
model
.
initFull
();
auto
&
forces
=
model
.
getExternalForce
();
auto
&
displacement
=
model
.
getDisplacement
();
auto
&
boundary
=
model
.
getBlockedDOFs
();
const
auto
&
N_M
=
model
.
getStress
(
_bernoulli_beam_2
);
auto
&
element_material
=
model
.
getElementMaterial
(
_bernoulli_beam_2
);
boundary
.
set
(
false
);
forces
.
zero
();
displacement
.
zero
();
element_material
(
1
)
=
1
;
forces
(
0
,
1
)
=
-
q
*
L
/
2.
;
forces
(
0
,
2
)
=
-
q
*
L
*
L
/
12.
;
forces
(
1
,
1
)
=
-
q
*
L
/
2.
;
forces
(
1
,
2
)
=
q
*
L
*
L
/
12.
;
forces
(
2
,
2
)
=
M
;
forces
(
2
,
0
)
=
mat2
.
E
*
mat2
.
A
/
18
;
// Defining the boundary conditions
boundary
(
0
,
0
)
=
true
;
boundary
(
0
,
1
)
=
true
;
boundary
(
0
,
2
)
=
true
;
boundary
(
1
,
1
)
=
true
;
boundary
(
2
,
1
)
=
true
;
model
.
addDumpFieldVector
(
"displacement"
);
model
.
addDumpField
(
"rotation"
);
model
.
addDumpFieldVector
(
"force"
);
model
.
addDumpField
(
"momentum"
);
model
.
solveStep
();
model
.
assembleResidual
();
// Post-Processing
std
::
cout
<<
" d1 = "
<<
displacement
(
1
,
2
)
<<
std
::
endl
;
std
::
cout
<<
" d2 = "
<<
displacement
(
2
,
2
)
<<
std
::
endl
;
std
::
cout
<<
" d3 = "
<<
displacement
(
1
,
0
)
<<
std
::
endl
;
std
::
cout
<<
" M1 = "
<<
N_M
(
0
,
1
)
<<
std
::
endl
;
std
::
cout
<<
" M2 = "
<<
N_M
(
2
*
(
nb_nodes
-
2
),
1
)
<<
std
::
endl
;
model
.
dump
();
finalize
();
}
Event Timeline
Log In to Comment