Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94229972
explicit_dynamic.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 23:01
Size
3 KB
Mime Type
text/x-c
Expires
Fri, Dec 6, 23:01 (1 d, 17 h)
Engine
blob
Format
Raw Data
Handle
22206563
Attached To
rAKA akantu
explicit_dynamic.cc
View Options
/**
* @file explicit_dynamic.cc
*
* @author Seyedeh Mohadeseh Taheri Mousavi <mohadeseh.taherimousavi@epfl.ch>
*
* @date creation: Sun Jul 12 2015
* @date last modification: Mon Jan 18 2016
*
* @brief This code refers to the explicit dynamic example from the user manual
*
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
#include <fstream>
/* -------------------------------------------------------------------------- */
using
namespace
akantu
;
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
"material.dat"
,
argc
,
argv
);
const
UInt
spatial_dimension
=
3
;
const
Real
pulse_width
=
2.
;
const
Real
A
=
0.01
;
Real
time_step
;
Real
time_factor
=
0.8
;
UInt
max_steps
=
1000
;
Mesh
mesh
(
spatial_dimension
);
if
(
Communicator
::
getStaticCommunicator
().
whoAmI
()
==
0
)
mesh
.
read
(
"bar.msh"
);
SolidMechanicsModel
model
(
mesh
);
/// model initialization
model
.
initFull
(
_analysis_method
=
_explicit_lumped_mass
);
time_step
=
model
.
getStableTimeStep
();
std
::
cout
<<
"Time Step = "
<<
time_step
*
time_factor
<<
"s ("
<<
time_step
<<
"s)"
<<
std
::
endl
;
time_step
*=
time_factor
;
model
.
setTimeStep
(
time_step
);
/// boundary and initial conditions
Array
<
Real
>
&
displacement
=
model
.
getDisplacement
();
const
Array
<
Real
>
&
nodes
=
mesh
.
getNodes
();
for
(
UInt
n
=
0
;
n
<
mesh
.
getNbNodes
();
++
n
)
{
Real
x
=
nodes
(
n
)
-
2
;
// Sinus * Gaussian
Real
L
=
pulse_width
;
Real
k
=
0.1
*
2
*
M_PI
*
3
/
L
;
displacement
(
n
)
=
A
*
sin
(
k
*
x
)
*
exp
(
-
(
k
*
x
)
*
(
k
*
x
)
/
(
L
*
L
));
}
std
::
ofstream
energy
;
energy
.
open
(
"energy.csv"
);
energy
<<
"id,rtime,epot,ekin,tot"
<<
std
::
endl
;
model
.
setBaseName
(
"explicit_dynamic"
);
model
.
addDumpField
(
"displacement"
);
model
.
addDumpField
(
"velocity"
);
model
.
addDumpField
(
"acceleration"
);
model
.
addDumpField
(
"stress"
);
model
.
dump
();
for
(
UInt
s
=
1
;
s
<=
max_steps
;
++
s
)
{
model
.
solveStep
();
Real
epot
=
model
.
getEnergy
(
"potential"
);
Real
ekin
=
model
.
getEnergy
(
"kinetic"
);
energy
<<
s
<<
","
<<
s
*
time_step
<<
","
<<
epot
<<
","
<<
ekin
<<
","
<<
epot
+
ekin
<<
","
<<
std
::
endl
;
if
(
s
%
10
==
0
)
std
::
cout
<<
"passing step "
<<
s
<<
"/"
<<
max_steps
<<
std
::
endl
;
model
.
dump
();
}
energy
.
close
();
finalize
();
return
EXIT_SUCCESS
;
}
Event Timeline
Log In to Comment