Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94967928
element_class_tmpl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 11, 19:19
Size
21 KB
Mime Type
text/x-c++
Expires
Fri, Dec 13, 19:19 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22890512
Attached To
rAKA akantu
element_class_tmpl.hh
View Options
/**
* Copyright (©) 2013-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
//#include "element_class.hh"
#include "aka_iterators.hh"
#include "gauss_integration_tmpl.hh"
/* -------------------------------------------------------------------------- */
#include <type_traits>
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_ELEMENT_CLASS_TMPL_HH_
#define AKANTU_ELEMENT_CLASS_TMPL_HH_
namespace
akantu
{
template
<
ElementType
element_type
,
ElementKind
element_kind
>
inline
constexpr
decltype
(
auto
)
ElementClass
<
element_type
,
element_kind
>::
getFacetTypes
()
{
return
Eigen
::
Map
<
const
Eigen
::
Matrix
<
ElementType
,
geometrical_element
::
getNbFacetTypes
(),
1
>>
(
element_class_extra_geom_property
::
facet_type
.
data
());
}
/* -------------------------------------------------------------------------- */
/* GeometricalElement */
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
template
<
Idx
t
,
std
::
size_t
size
,
std
::
enable_if_t
<
not
(
t
<
size
)
>
*>
inline
constexpr
decltype
(
auto
)
GeometricalElement
<
geometrical_type
,
shape
>::
getFacetLocalConnectivityPerElement
()
{
throw
std
::
range_error
(
"Not a valid facet id for this element type"
);
}
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
template
<
Idx
t
,
std
::
size_t
size
,
std
::
enable_if_t
<
(
t
<
size
)
>
*>
inline
constexpr
decltype
(
auto
)
GeometricalElement
<
geometrical_type
,
shape
>::
getFacetLocalConnectivityPerElement
()
{
Int
pos
=
0
;
for
(
Int
i
=
0
;
i
<
t
;
++
i
)
{
pos
+=
geometrical_property
::
nb_facets
[
i
]
*
geometrical_property
::
nb_nodes_per_facet
[
i
];
}
return
Eigen
::
Map
<
const
Eigen
::
Matrix
<
Idx
,
geometrical_property
::
nb_facets
[
t
],
geometrical_property
::
nb_nodes_per_facet
[
t
]
>>
(
geometrical_property
::
facet_connectivity_vect
.
data
()
+
pos
);
}
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
inline
constexpr
decltype
(
auto
)
GeometricalElement
<
geometrical_type
,
shape
>::
getFacetLocalConnectivityPerElement
(
Idx
t
)
{
Int
pos
=
0
;
for
(
Int
i
=
0
;
i
<
t
;
++
i
)
{
pos
+=
geometrical_property
::
nb_facets
[
i
]
*
geometrical_property
::
nb_nodes_per_facet
[
i
];
}
return
Eigen
::
Map
<
const
Eigen
::
Matrix
<
Idx
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
(
geometrical_property
::
facet_connectivity_vect
.
data
()
+
pos
,
geometrical_property
::
nb_facets
[
t
],
geometrical_property
::
nb_nodes_per_facet
[
t
]);
}
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
inline
constexpr
Int
GeometricalElement
<
geometrical_type
,
shape
>::
getNbFacetsPerElement
()
{
Int
total_nb_facets
=
0
;
for
(
Int
n
=
0
;
n
<
geometrical_property
::
nb_facet_types
;
++
n
)
{
total_nb_facets
+=
geometrical_property
::
nb_facets
[
n
];
}
return
total_nb_facets
;
}
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
inline
constexpr
Int
GeometricalElement
<
geometrical_type
,
shape
>::
getNbFacetsPerElement
(
Idx
t
)
{
return
geometrical_property
::
nb_facets
[
t
];
}
/* -------------------------------------------------------------------------- */
template
<
GeometricalType
geometrical_type
,
GeometricalShapeType
shape
>
template
<
class
D
>
inline
bool
GeometricalElement
<
geometrical_type
,
shape
>::
contains
(
const
Eigen
::
MatrixBase
<
D
>
&
coords
)
{
return
GeometricalShapeContains
<
shape
>::
contains
(
coords
);
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
D
>
inline
bool
GeometricalShapeContains
<
_gst_point
>::
contains
(
const
Eigen
::
MatrixBase
<
D
>
&
coords
)
{
return
(
coords
(
0
)
<
std
::
numeric_limits
<
Real
>::
epsilon
());
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
D
>
inline
bool
GeometricalShapeContains
<
_gst_square
>::
contains
(
const
Eigen
::
MatrixBase
<
D
>
&
coords
)
{
bool
in
=
true
;
for
(
Int
i
=
0
;
i
<
coords
.
size
()
&&
in
;
++
i
)
{
in
&=
((
coords
(
i
)
>=
-
(
1.
+
std
::
numeric_limits
<
Real
>::
epsilon
()))
&&
(
coords
(
i
)
<=
(
1.
+
std
::
numeric_limits
<
Real
>::
epsilon
())));
}
return
in
;
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
D
>
inline
bool
GeometricalShapeContains
<
_gst_triangle
>::
contains
(
const
Eigen
::
MatrixBase
<
D
>
&
coords
)
{
bool
in
=
true
;
Real
sum
=
0
;
for
(
Int
i
=
0
;
(
i
<
coords
.
size
())
&&
in
;
++
i
)
{
in
&=
((
coords
(
i
)
>=
-
(
Math
::
getTolerance
()))
&&
(
coords
(
i
)
<=
(
1.
+
Math
::
getTolerance
())));
sum
+=
coords
(
i
);
}
if
(
in
)
{
return
(
in
&&
(
sum
<=
(
1.
+
Math
::
getTolerance
())));
}
return
in
;
}
/* -------------------------------------------------------------------------- */
template
<>
template
<
class
D
>
inline
bool
GeometricalShapeContains
<
_gst_prism
>::
contains
(
const
Eigen
::
MatrixBase
<
D
>
&
coords
)
{
bool
in
=
((
coords
(
0
)
>=
-
1.
)
&&
(
coords
(
0
)
<=
1.
));
// x in segment [-1, 1]
// y and z in triangle
in
&=
((
coords
(
1
)
>=
0
)
&&
(
coords
(
1
)
<=
1.
));
in
&=
((
coords
(
2
)
>=
0
)
&&
(
coords
(
2
)
<=
1.
));
Real
sum
=
coords
(
1
)
+
coords
(
2
);
return
(
in
&&
(
sum
<=
1
));
}
/* -------------------------------------------------------------------------- */
/* InterpolationElement */
/* -------------------------------------------------------------------------- */
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
template
<
typename
D1
,
typename
D2
,
aka
::
enable_if_t
<
aka
::
are_matrices
<
D1
,
D2
>::
value
>
*>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
computeShapes
(
const
Eigen
::
MatrixBase
<
D1
>
&
Xs
,
const
Eigen
::
MatrixBase
<
D2
>
&
N_
)
{
Eigen
::
MatrixBase
<
D2
>
&
N
=
const_cast
<
Eigen
::
MatrixBase
<
D2
>
&>
(
N_
);
// as advised by the Eigen developers
for
(
auto
&&
data
:
zip
(
Xs
,
N
))
{
computeShapes
(
std
::
get
<
0
>
(
data
),
std
::
get
<
1
>
(
data
));
}
}
/* -------------------------------------------------------------------------- */
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
template
<
class
D
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
computeDNDS
(
const
Eigen
::
MatrixBase
<
D
>
&
Xs
,
Tensor3Base
<
Real
>
&
dNdS
)
{
for
(
auto
&&
data
:
zip
(
Xs
,
dNdS
))
{
computeDNDS
(
std
::
get
<
0
>
(
data
),
std
::
get
<
1
>
(
data
));
}
}
/* -------------------------------------------------------------------------- */
/**
* interpolate on a point a field for which values are given on the
* node of the element using the shape functions at this interpolation point
*
* @param nodal_values values of the function per node @f$ f_{ij} = f_{n_i j}
*@f$ so it should be a matrix of size nb_nodes_per_element @f$\times@f$
*nb_degree_of_freedom
* @param shapes value of shape functions at the interpolation point
* @param interpolated interpolated value of f @f$ f_j(\xi) = \sum_i f_{n_i
j} *N_i @f$
*/
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
template
<
typename
Derived1
,
typename
Derived2
>
inline
auto
InterpolationElement
<
interpolation_type
,
kind
>::
interpolate
(
const
Eigen
::
MatrixBase
<
Derived1
>
&
nodal_values
,
const
Eigen
::
MatrixBase
<
Derived2
>
&
shapes
)
{
return
nodal_values
*
shapes
;
}
/* -------------------------------------------------------------------------- */
/**
* interpolate on several points a field for which values are given on the
* node of the element using the shape functions at the interpolation point
*
* @param nodal_values values of the function per node @f$ f_{ij} = f_{n_i j}
*@f$ so it should be a matrix of size nb_nodes_per_element @f$\times@f$
*nb_degree_of_freedom
* @param shapes value of shape functions at the interpolation point
* @param interpolated interpolated values of f @f$ f_j(\xi) = \sum_i f_{n_i j}
*N_i @f$
*/
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
template
<
typename
Derived1
,
typename
Derived2
,
typename
Derived3
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
interpolate
(
const
Eigen
::
MatrixBase
<
Derived1
>
&
nodal_values
,
const
Eigen
::
MatrixBase
<
Derived2
>
&
Ns
,
const
Eigen
::
MatrixBase
<
Derived3
>
&
interpolated_
)
{
auto
&&
interpolated
=
const_cast
<
Eigen
::
MatrixBase
<
Derived3
>
&>
(
interpolated_
);
// as advised by the Eigen developers
auto
nb_points
=
Ns
.
cols
();
for
(
auto
p
=
0
;
p
<
nb_points
;
++
p
)
{
interpolated
.
col
(
p
).
noalias
()
=
interpolate
(
nodal_values
,
Ns
.
col
(
p
));
}
}
/* -------------------------------------------------------------------------- */
/**
* interpolate the field on a point given in natural coordinates the field which
* values are given on the node of the element
*
* @param natural_coords natural coordinates of point where to interpolate \xi
* @param nodal_values values of the function per node @f$ f_{ij} = f_{n_i j}
*@f$ so it should be a matrix of size nb_nodes_per_element @f$\times@f$
*nb_degree_of_freedom
* @param interpolated interpolated value of f @f$ f_j(\xi) = \sum_i f_{n_i j}
*N_i @f$
*/
// template <InterpolationType interpolation_type, InterpolationKind kind>
// inline decltype(auto)
// InterpolationElement<interpolation_type,
// kind>::interpolateOnNaturalCoordinates(
// const Ref<const VectorXr> & natural_coords,
// const Ref<const MatrixXr> & nodal_values, Ref<VectorXr> interpolated) {
// using interpolation = InterpolationProperty<interpolation_type>;
// Eigen::Matrix<Real, interpolation::nb_nodes_per_element, 1> shapes;
// computeShapes(natural_coords, shapes);
// return interpolate(nodal_values, shapes);
// }
/* -------------------------------------------------------------------------- */
/// @f$ gradient_{ij} = \frac{\partial f_j}{\partial s_i} = \sum_k
/// \frac{\partial N_k}{\partial s_i}f_{j n_k} @f$
template
<
InterpolationType
interpolation_type
,
InterpolationKind
kind
>
template
<
typename
D1
,
typename
D2
,
typename
D3
>
inline
void
InterpolationElement
<
interpolation_type
,
kind
>::
gradientOnNaturalCoordinates
(
const
Eigen
::
MatrixBase
<
D1
>
&
natural_coords
,
const
Eigen
::
MatrixBase
<
D2
>
&
f
,
const
Eigen
::
MatrixBase
<
D3
>
&
dfds_
)
{
constexpr
auto
nsp
=
InterpolationProperty
<
interpolation_type
>::
natural_space_dimension
;
constexpr
auto
nnodes
=
InterpolationProperty
<
interpolation_type
>::
nb_nodes_per_element
;
Eigen
::
Matrix
<
Real
,
D3
::
ColsAtCompileTime
,
D2
::
ColsAtCompileTime
>
dnds
(
nsp
,
nnodes
);
auto
&
dfds
=
const_cast
<
Eigen
::
MatrixBase
<
D3
>
&>
(
dfds_
);
computeDNDS
(
natural_coords
,
dnds
);
dfds
.
noalias
()
=
f
*
dnds
.
transpose
();
}
/* -------------------------------------------------------------------------- */
/* ElementClass */
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D1
,
class
D2
>
inline
decltype
(
auto
)
ElementClass
<
type
,
kind
>::
computeJMat
(
const
Eigen
::
MatrixBase
<
D1
>
&
dnds
,
const
Eigen
::
MatrixBase
<
D2
>
&
node_coords
)
{
/// @f$ J = dxds = dnds * x @f$
return
dnds
*
node_coords
.
transpose
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D
>
inline
void
ElementClass
<
type
,
kind
>::
computeJMat
(
const
Tensor3Base
<
Real
>
&
dnds
,
const
Eigen
::
MatrixBase
<
D
>
&
node_coords
,
Tensor3Base
<
Real
>
&
J
)
{
for
(
auto
&&
data
:
zip
(
J
,
dnds
))
{
std
::
get
<
0
>
(
data
)
=
computeJMat
(
std
::
get
<
1
>
(
data
),
node_coords
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D1
,
class
D2
,
class
D3
>
inline
void
ElementClass
<
type
,
kind
>::
computeJacobian
(
const
Eigen
::
MatrixBase
<
D1
>
&
natural_coords
,
const
Eigen
::
MatrixBase
<
D2
>
&
node_coords
,
Eigen
::
MatrixBase
<
D3
>
&
jacobians
)
{
auto
nb_points
=
natural_coords
.
cols
();
Matrix
<
Real
,
interpolation_property
::
natural_space_dimension
,
interpolation_property
::
nb_nodes_per_element
>
dnds
;
Matrix
<
Real
>
J
(
natural_coords
.
rows
(),
node_coords
.
rows
());
for
(
Int
p
=
0
;
p
<
nb_points
;
++
p
)
{
interpolation_element
::
computeDNDS
(
natural_coords
.
col
(
p
),
dnds
);
J
=
computeJMat
(
dnds
,
node_coords
);
jacobians
(
p
)
=
computeJacobian
(
J
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D
>
inline
void
ElementClass
<
type
,
kind
>::
computeJacobian
(
const
Tensor3Base
<
Real
>
&
J
,
Eigen
::
MatrixBase
<
D
>
&
jacobians
)
{
auto
nb_points
=
J
.
size
(
2
);
for
(
Int
p
=
0
;
p
<
nb_points
;
++
p
)
{
computeJacobian
(
J
(
p
),
jacobians
.
col
(
p
));
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D
>
inline
Real
ElementClass
<
type
,
kind
>::
computeJacobian
(
const
Eigen
::
MatrixBase
<
D
>
&
J
)
{
if
(
J
.
rows
()
==
J
.
cols
())
{
return
J
.
determinant
();
}
else
{
switch
(
interpolation_property
::
natural_space_dimension
)
{
case
1
:
{
return
J
.
norm
();
}
case
2
:
{
auto
Jstatic
=
Eigen
::
Map
<
const
Eigen
::
Matrix
<
Real
,
2
,
3
>>
(
J
.
derived
().
data
());
return
(
Jstatic
.
row
(
0
)).
cross
(
Jstatic
.
row
(
1
)).
norm
();
}
default
:
{
return
0
;
}
}
}
return
0
;
// avoids a warning
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D1
,
class
D2
,
class
D3
>
inline
void
ElementClass
<
type
,
kind
>::
computeShapeDerivatives
(
const
Eigen
::
MatrixBase
<
D1
>
&
J
,
const
Eigen
::
MatrixBase
<
D2
>
&
dnds
,
Eigen
::
MatrixBase
<
D3
>
&
shape_deriv
)
{
shape_deriv
=
J
.
inverse
()
*
dnds
;
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
inline
void
ElementClass
<
type
,
kind
>::
computeShapeDerivatives
(
const
Tensor3Base
<
Real
>
&
J
,
const
Tensor3Base
<
Real
>
&
dnds
,
Tensor3Base
<
Real
>
&
shape_deriv
)
{
auto
nb_points
=
J
.
size
(
2
);
for
(
Int
p
=
0
;
p
<
nb_points
;
++
p
)
{
auto
&&
J_
=
J
(
p
);
auto
&&
dnds_
=
dnds
(
p
);
auto
&&
dndx_
=
shape_deriv
(
p
);
dndx_
=
J_
.
inverse
()
*
dnds_
;
// computeShapeDerivatives(J_, dnds_, dndx_);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D1
,
class
D2
,
class
D3
>
inline
void
ElementClass
<
type
,
kind
>::
computeNormalsOnNaturalCoordinates
(
const
Eigen
::
MatrixBase
<
D1
>
&
coord
,
const
Eigen
::
MatrixBase
<
D2
>
&
f
,
Eigen
::
MatrixBase
<
D3
>
&
normals
)
{
auto
dimension
=
normals
.
rows
();
auto
nb_points
=
coord
.
cols
();
constexpr
auto
ndim
=
interpolation_property
::
natural_space_dimension
;
AKANTU_DEBUG_ASSERT
((
dimension
-
1
)
==
ndim
,
"cannot extract a normal because of dimension mismatch "
<<
dimension
-
1
<<
" "
<<
ndim
);
Matrix
<
Real
,
Eigen
::
Dynamic
,
ndim
>
J
(
dimension
,
ndim
);
for
(
Int
p
=
0
;
p
<
nb_points
;
++
p
)
{
interpolation_element
::
gradientOnNaturalCoordinates
(
coord
.
col
(
p
),
f
,
J
);
if
(
dimension
==
2
)
{
normals
.
col
(
p
)
=
Math
::
normal
(
J
);
}
if
(
dimension
==
3
)
{
normals
.
col
(
p
)
=
Math
::
normal
(
J
.
col
(
0
),
J
.
col
(
1
));
}
}
}
/* ------------------------------------------------------------------------- */
/**
* In the non linear cases we need to iterate to find the natural coordinates
*@f$\xi@f$
* provided real coordinates @f$x@f$.
*
* We want to solve: @f$ x- \phi(\xi) = 0@f$ with @f$\phi(\xi) = \sum_I N_I(\xi)
*x_I@f$
* the mapping function which uses the nodal coordinates @f$x_I@f$.
*
* To that end we use the Newton method and the following series:
*
* @f$ \frac{\partial \phi(x_k)}{\partial \xi} \left( \xi_{k+1} - \xi_k \right)
*= x - \phi(x_k)@f$
*
* When we consider elements embedded in a dimension higher than them (2D
*triangle in a 3D space for example)
* @f$ J = \frac{\partial \phi(\xi_k)}{\partial \xi}@f$ is of dimension
*@f$dim_{space} \times dim_{elem}@f$ which
* is not invertible in most cases. Rather we can solve the problem:
*
* @f$ J^T J \left( \xi_{k+1} - \xi_k \right) = J^T \left( x - \phi(\xi_k)
*\right) @f$
*
* So that
*
* @f$ d\xi = \xi_{k+1} - \xi_k = (J^T J)^{-1} J^T \left( x - \phi(\xi_k)
*\right) @f$
*
* So that if the series converges we have:
*
* @f$ 0 = J^T \left( \phi(\xi_\infty) - x \right) @f$
*
* And we see that this is ill-posed only if @f$ J^T x = 0@f$ which means that
*the vector provided
* is normal to any tangent which means it is outside of the element itself.
*
* @param real_coords: the real coordinates the natural coordinates are sought
*for
* @param node_coords: the coordinates of the nodes forming the element
* @param natural_coords: output->the sought natural coordinates
* @param spatial_dimension: spatial dimension of the problem
*
**/
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D1
,
class
D2
,
class
D3
,
aka
::
enable_if_vectors_t
<
D1
,
D3
>
*>
inline
void
ElementClass
<
type
,
kind
>::
inverseMap
(
const
Eigen
::
MatrixBase
<
D1
>
&
real_coords
,
const
Eigen
::
MatrixBase
<
D2
>
&
node_coords
,
const
Eigen
::
MatrixBase
<
D3
>
&
natural_coords_
,
Int
max_iterations
,
Real
tolerance
)
{
auto
&
natural_coords
=
const_cast
<
Eigen
::
MatrixBase
<
D3
>
&>
(
natural_coords_
);
// as advised by the Eigen developers
auto
spatial_dimension
=
real_coords
.
size
();
constexpr
auto
dimension
=
getSpatialDimension
();
// matrix copy of the real_coords
// MatrixProxy<const Real> mreal_coords(real_coords.data(),
// spatial_dimension,
// 1);
// initial guess
natural_coords
.
zero
();
// real space coordinates provided by initial guess
Vector
<
Real
>
physical_guess
(
spatial_dimension
);
// objective function f = real_coords - physical_guess
Vector
<
Real
>
f
(
spatial_dimension
);
// G = J^t * J
Matrix
<
Real
>
G
(
dimension
,
dimension
);
// F = G.inverse() * J^t
Matrix
<
Real
>
F
(
spatial_dimension
,
dimension
);
// J^t
Matrix
<
Real
>
Jt
(
spatial_dimension
,
dimension
);
// dxi = \xi_{k+1} - \xi in the iterative process
Vector
<
Real
>
dxi
(
dimension
);
/* --------------------------- */
/* init before iteration loop */
/* --------------------------- */
// do interpolation
auto
update_f
=
[
&
f
,
&
physical_guess
,
&
natural_coords
,
&
node_coords
,
&
real_coords
]()
{
physical_guess
=
interpolation_element
::
interpolateOnNaturalCoordinates
(
natural_coords
,
node_coords
);
// compute initial objective function value f = real_coords -
// physical_guess
f
=
real_coords
-
physical_guess
;
// compute initial error
auto
error
=
f
.
norm
();
return
error
;
};
auto
inverse_map_error
=
update_f
();
/* --------------------------- */
/* iteration loop */
/* --------------------------- */
Int
iterations
{
0
};
while
(
tolerance
<
inverse_map_error
and
iterations
<
max_iterations
)
{
// compute J^t
interpolation_element
::
gradientOnNaturalCoordinates
(
natural_coords
,
node_coords
,
Jt
);
// compute G
G
=
Jt
.
transpose
()
*
Jt
;
// compute F
F
=
Jt
*
G
.
inverse
();
// compute increment
dxi
=
F
.
transpose
()
*
f
;
// update our guess
natural_coords
+=
dxi
;
inverse_map_error
=
update_f
();
iterations
++
;
}
if
(
iterations
>=
max_iterations
)
{
AKANTU_EXCEPTION
(
"The solver in inverse map did not converge"
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
ElementKind
kind
>
template
<
class
D1
,
class
D2
,
class
D3
,
aka
::
enable_if_matrices_t
<
D1
,
D3
>
*>
inline
void
ElementClass
<
type
,
kind
>::
inverseMap
(
const
Eigen
::
MatrixBase
<
D1
>
&
real_coords
,
const
Eigen
::
MatrixBase
<
D2
>
&
node_coords
,
const
Eigen
::
MatrixBase
<
D3
>
&
natural_coords_
,
Int
max_iterations
,
Real
tolerance
)
{
auto
&
natural_coords
=
const_cast
<
Eigen
::
MatrixBase
<
D2
>
&>
(
natural_coords_
);
// as advised by the Eigen developers
auto
nb_points
=
real_coords
.
cols
();
for
(
Int
p
=
0
;
p
<
nb_points
;
++
p
)
{
inverseMap
(
real_coords
(
p
),
node_coords
,
natural_coords
(
p
),
max_iterations
,
tolerance
);
}
}
}
// namespace akantu
#endif
/* AKANTU_ELEMENT_CLASS_TMPL_HH_ */
Event Timeline
Log In to Comment