Page MenuHomec4science

solid_mechanics_model.cc
No OneTemporary

File Metadata

Created
Thu, Dec 12, 13:06

solid_mechanics_model.cc

/**
* @file solid_mechanics_model.cc
*
* @author Ramin Aghababaei <ramin.aghababaei@epfl.ch>
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Mauro Corrado <mauro.corrado@epfl.ch>
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Clement Roux <clement.roux@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Tue Jul 27 2010
* @date last modification: Fri Apr 09 2021
*
* @brief Implementation of the SolidMechanicsModel class
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_mechanics_model.hh"
#include "integrator_gauss.hh"
#include "shape_lagrange.hh"
#include "solid_mechanics_model_tmpl.hh"
#include "communicator.hh"
#include "element_synchronizer.hh"
#include "sparse_matrix.hh"
#include "synchronizer_registry.hh"
#include "dumpable_inline_impl.hh"
/* -------------------------------------------------------------------------- */
#include "dumper_iohelper_paraview.hh"
/* -------------------------------------------------------------------------- */
#include "material_non_local.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
/**
* A solid mechanics model need a mesh and a dimension to be created. the model
* by it self can not do a lot, the good init functions should be called in
* order to configure the model depending on what we want to do.
*
* @param mesh mesh representing the model we want to simulate
* @param dim spatial dimension of the problem, if dim = 0 (default value) the
* dimension of the problem is assumed to be the on of the mesh
* @param id an id to identify the model
* @param model_type this is an internal parameter for inheritance purposes
*/
SolidMechanicsModel::SolidMechanicsModel(
Mesh & mesh, UInt dim, const ID & id,
std::shared_ptr<DOFManager> dof_manager, const ModelType model_type)
: Model(mesh, model_type, dim, id), material_index("material index", id),
material_local_numbering("material local numbering", id) {
AKANTU_DEBUG_IN();
this->initDOFManager(dof_manager);
this->registerFEEngineObject<MyFEEngineType>("SolidMechanicsFEEngine", mesh,
Model::spatial_dimension);
this->mesh.registerDumper<DumperParaview>("solid_mechanics_model", id, true);
this->mesh.addDumpMesh(mesh, Model::spatial_dimension, _not_ghost,
_ek_regular);
material_selector = std::make_shared<DefaultMaterialSelector>(material_index);
this->registerDataAccessor(*this);
if (this->mesh.isDistributed()) {
auto & synchronizer = this->mesh.getElementSynchronizer();
this->registerSynchronizer(synchronizer, SynchronizationTag::_material_id);
this->registerSynchronizer(synchronizer, SynchronizationTag::_smm_mass);
this->registerSynchronizer(synchronizer, SynchronizationTag::_smm_stress);
this->registerSynchronizer(synchronizer, SynchronizationTag::_for_dump);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
SolidMechanicsModel::~SolidMechanicsModel() = default;
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::setTimeStep(Real time_step, const ID & solver_id) {
Model::setTimeStep(time_step, solver_id);
this->mesh.getDumper().setTimeStep(time_step);
}
/* -------------------------------------------------------------------------- */
/* Initialization */
/* -------------------------------------------------------------------------- */
/**
* This function groups many of the initialization in on function. For most of
* basics case the function should be enough. The functions initialize the
* model, the internal vectors, set them to 0, and depending on the parameters
* it also initialize the explicit or implicit solver.
*
* @param options
* \parblock
* contains the different options to initialize the model
* \li \c analysis_method specify the type of solver to use
* \endparblock
*/
void SolidMechanicsModel::initFullImpl(const ModelOptions & options) {
material_index.initialize(mesh, _element_kind = _ek_not_defined,
_default_value = UInt(-1), _with_nb_element = true);
material_local_numbering.initialize(mesh, _element_kind = _ek_not_defined,
_with_nb_element = true);
Model::initFullImpl(options);
// initialize the materials
if (not this->parser.getLastParsedFile().empty()) {
this->instantiateMaterials();
this->initMaterials();
}
this->initBC(*this, *displacement, *displacement_increment, *external_force);
}
/* -------------------------------------------------------------------------- */
TimeStepSolverType SolidMechanicsModel::getDefaultSolverType() const {
return TimeStepSolverType::_dynamic_lumped;
}
/* -------------------------------------------------------------------------- */
ModelSolverOptions SolidMechanicsModel::getDefaultSolverOptions(
const TimeStepSolverType & type) const {
ModelSolverOptions options;
switch (type) {
case TimeStepSolverType::_dynamic_lumped: {
options.non_linear_solver_type = NonLinearSolverType::_lumped;
options.integration_scheme_type["displacement"] =
IntegrationSchemeType::_central_difference;
options.solution_type["displacement"] = IntegrationScheme::_acceleration;
break;
}
case TimeStepSolverType::_static: {
options.non_linear_solver_type = NonLinearSolverType::_newton_raphson;
options.integration_scheme_type["displacement"] =
IntegrationSchemeType::_pseudo_time;
options.solution_type["displacement"] = IntegrationScheme::_not_defined;
break;
}
case TimeStepSolverType::_dynamic: {
if (this->method == _explicit_consistent_mass) {
options.non_linear_solver_type = NonLinearSolverType::_newton_raphson;
options.integration_scheme_type["displacement"] =
IntegrationSchemeType::_central_difference;
options.solution_type["displacement"] = IntegrationScheme::_acceleration;
} else {
options.non_linear_solver_type = NonLinearSolverType::_newton_raphson;
options.integration_scheme_type["displacement"] =
IntegrationSchemeType::_trapezoidal_rule_2;
options.solution_type["displacement"] = IntegrationScheme::_displacement;
}
break;
}
default:
AKANTU_EXCEPTION(type << " is not a valid time step solver type");
}
return options;
}
/* -------------------------------------------------------------------------- */
std::tuple<ID, TimeStepSolverType>
SolidMechanicsModel::getDefaultSolverID(const AnalysisMethod & method) {
switch (method) {
case _explicit_lumped_mass: {
return std::make_tuple("explicit_lumped",
TimeStepSolverType::_dynamic_lumped);
}
case _explicit_consistent_mass: {
return std::make_tuple("explicit", TimeStepSolverType::_dynamic);
}
case _static: {
return std::make_tuple("static", TimeStepSolverType::_static);
}
case _implicit_dynamic: {
return std::make_tuple("implicit", TimeStepSolverType::_dynamic);
}
default:
return std::make_tuple("unknown", TimeStepSolverType::_not_defined);
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::initSolver(TimeStepSolverType time_step_solver_type,
NonLinearSolverType /*unused*/) {
auto & dof_manager = this->getDOFManager();
/* ------------------------------------------------------------------------ */
// for alloc type of solvers
this->allocNodalField(this->displacement, spatial_dimension, "displacement");
this->allocNodalField(this->previous_displacement, spatial_dimension,
"previous_displacement");
this->allocNodalField(this->displacement_increment, spatial_dimension,
"displacement_increment");
this->allocNodalField(this->internal_force, spatial_dimension,
"internal_force");
this->allocNodalField(this->external_force, spatial_dimension,
"external_force");
this->allocNodalField(this->blocked_dofs, spatial_dimension, "blocked_dofs");
this->allocNodalField(this->current_position, spatial_dimension,
"current_position");
// initialize the current positions
this->current_position->copy(this->mesh.getNodes());
/* ------------------------------------------------------------------------ */
if (!dof_manager.hasDOFs("displacement")) {
dof_manager.registerDOFs("displacement", *this->displacement, _dst_nodal);
dof_manager.registerBlockedDOFs("displacement", *this->blocked_dofs);
dof_manager.registerDOFsIncrement("displacement",
*this->displacement_increment);
dof_manager.registerDOFsPrevious("displacement",
*this->previous_displacement);
}
/* ------------------------------------------------------------------------ */
// for dynamic
if (time_step_solver_type == TimeStepSolverType::_dynamic ||
time_step_solver_type == TimeStepSolverType::_dynamic_lumped) {
this->allocNodalField(this->velocity, spatial_dimension, "velocity");
this->allocNodalField(this->acceleration, spatial_dimension,
"acceleration");
if (!dof_manager.hasDOFsDerivatives("displacement", 1)) {
dof_manager.registerDOFsDerivative("displacement", 1, *this->velocity);
dof_manager.registerDOFsDerivative("displacement", 2,
*this->acceleration);
}
}
}
/* -------------------------------------------------------------------------- */
/**
* Initialize the model,basically it pre-compute the shapes, shapes derivatives
* and jacobian
*/
void SolidMechanicsModel::initModel() {
/// \todo add the current position as a parameter to initShapeFunctions for
/// large deformation
getFEEngine().initShapeFunctions(_not_ghost);
getFEEngine().initShapeFunctions(_ghost);
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::assembleResidual() {
AKANTU_DEBUG_IN();
/* ------------------------------------------------------------------------ */
// computes the internal forces
this->assembleInternalForces();
/* ------------------------------------------------------------------------ */
this->getDOFManager().assembleToResidual("displacement",
*this->external_force, 1);
this->getDOFManager().assembleToResidual("displacement",
*this->internal_force, 1);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::assembleResidual(const ID & residual_part) {
AKANTU_DEBUG_IN();
if ("external" == residual_part) {
this->getDOFManager().assembleToResidual("displacement",
*this->external_force, 1);
AKANTU_DEBUG_OUT();
return;
}
if ("internal" == residual_part) {
this->assembleInternalForces();
this->getDOFManager().assembleToResidual("displacement",
*this->internal_force, 1);
AKANTU_DEBUG_OUT();
return;
}
AKANTU_CUSTOM_EXCEPTION(
debug::SolverCallbackResidualPartUnknown(residual_part));
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
MatrixType SolidMechanicsModel::getMatrixType(const ID & matrix_id) const {
// \TODO check the materials to know what is the correct answer
if (matrix_id == "C") {
return _mt_not_defined;
}
if (matrix_id == "K") {
auto matrix_type = _unsymmetric;
for (auto & material : materials) {
matrix_type = std::max(matrix_type, material->getMatrixType(matrix_id));
}
}
return _symmetric;
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::assembleMatrix(const ID & matrix_id) {
if (matrix_id == "K") {
this->assembleStiffnessMatrix();
} else if (matrix_id == "M") {
this->assembleMass();
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::assembleLumpedMatrix(const ID & matrix_id) {
if (matrix_id == "M") {
this->assembleMassLumped();
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::beforeSolveStep() {
for (auto & material : materials) {
material->beforeSolveStep();
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::afterSolveStep(bool converged) {
for (auto & material : materials) {
material->afterSolveStep(converged);
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::predictor() { ++displacement_release; }
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::corrector() { ++displacement_release; }
/* -------------------------------------------------------------------------- */
/**
* This function computes the internal forces as \f$F_{int} = \int_{\Omega} N
* \sigma d\Omega@\f$
*/
void SolidMechanicsModel::assembleInternalForces() {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_INFO("Assemble the internal forces");
this->internal_force->zero();
// compute the stresses of local elements
AKANTU_DEBUG_INFO("Compute local stresses");
for (auto & material : materials) {
material->computeAllStresses(_not_ghost);
}
/* ------------------------------------------------------------------------ */
/* Computation of the non local part */
if (this->non_local_manager) {
this->non_local_manager->computeAllNonLocalStresses();
}
// communicate the stresses
AKANTU_DEBUG_INFO("Send data for residual assembly");
this->asynchronousSynchronize(SynchronizationTag::_smm_stress);
// assemble the forces due to local stresses
AKANTU_DEBUG_INFO("Assemble residual for local elements");
for (auto & material : materials) {
material->assembleInternalForces(_not_ghost);
}
// finalize communications
AKANTU_DEBUG_INFO("Wait distant stresses");
this->waitEndSynchronize(SynchronizationTag::_smm_stress);
// assemble the stresses due to ghost elements
AKANTU_DEBUG_INFO("Assemble residual for ghost elements");
for (auto & material : materials) {
material->assembleInternalForces(_ghost);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::assembleStiffnessMatrix(bool need_to_reassemble) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_INFO("Assemble the new stiffness matrix.");
if (not this->getDOFManager().hasMatrix("K")) {
this->getDOFManager().getNewMatrix("K", this->getMatrixType("K"));
}
// Check if materials need to recompute the matrix
for (auto & material : materials) {
need_to_reassemble |= material->hasMatrixChanged("K");
}
if (need_to_reassemble) {
this->getDOFManager().getMatrix("K").zero();
// call compute stiffness matrix on each local elements
for (auto & material : materials) {
material->assembleStiffnessMatrix(_not_ghost);
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::updateCurrentPosition() {
if (this->current_position_release == this->displacement_release) {
return;
}
this->current_position->copy(this->mesh.getNodes());
auto cpos_it = this->current_position->begin(Model::spatial_dimension);
auto cpos_end = this->current_position->end(Model::spatial_dimension);
auto disp_it = this->displacement->begin(Model::spatial_dimension);
for (; cpos_it != cpos_end; ++cpos_it, ++disp_it) {
*cpos_it += *disp_it;
}
this->current_position_release = this->displacement_release;
}
/* -------------------------------------------------------------------------- */
const Array<Real> & SolidMechanicsModel::getCurrentPosition() {
this->updateCurrentPosition();
return *this->current_position;
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::updateDataForNonLocalCriterion(
ElementTypeMapReal & criterion) {
const ID field_name = criterion.getName();
for (auto & material : materials) {
if (!material->isInternal<Real>(field_name, _ek_regular)) {
continue;
}
for (auto ghost_type : ghost_types) {
material->flattenInternal(field_name, criterion, ghost_type, _ek_regular);
}
}
}
/* -------------------------------------------------------------------------- */
/* Information */
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getStableTimeStep() {
AKANTU_DEBUG_IN();
Real min_dt = getStableTimeStep(_not_ghost);
/// reduction min over all processors
mesh.getCommunicator().allReduce(min_dt, SynchronizerOperation::_min);
AKANTU_DEBUG_OUT();
return min_dt;
}
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getStableTimeStep(GhostType ghost_type) {
AKANTU_DEBUG_IN();
Real min_dt = std::numeric_limits<Real>::max();
this->updateCurrentPosition();
Element elem;
elem.ghost_type = ghost_type;
for (auto type :
mesh.elementTypes(Model::spatial_dimension, ghost_type, _ek_regular)) {
elem.type = type;
UInt nb_nodes_per_element = mesh.getNbNodesPerElement(type);
UInt nb_element = mesh.getNbElement(type);
auto mat_indexes = material_index(type, ghost_type).begin();
auto mat_loc_num = material_local_numbering(type, ghost_type).begin();
Array<Real> X(0, nb_nodes_per_element * Model::spatial_dimension);
FEEngine::extractNodalToElementField(mesh, *current_position, X, type,
_not_ghost);
auto X_el = X.begin(Model::spatial_dimension, nb_nodes_per_element);
for (UInt el = 0; el < nb_element;
++el, ++X_el, ++mat_indexes, ++mat_loc_num) {
elem.element = *mat_loc_num;
Real el_h = getFEEngine().getElementInradius(*X_el, type);
Real el_c = this->materials[*mat_indexes]->getCelerity(elem);
Real el_dt = el_h / el_c;
min_dt = std::min(min_dt, el_dt);
}
}
AKANTU_DEBUG_OUT();
return min_dt;
}
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getKineticEnergy() {
AKANTU_DEBUG_IN();
Real ekin = 0.;
UInt nb_nodes = mesh.getNbNodes();
if (this->getDOFManager().hasLumpedMatrix("M")) {
this->assembleLumpedMatrix("M");
auto m_it = this->mass->begin(Model::spatial_dimension);
auto m_end = this->mass->end(Model::spatial_dimension);
auto v_it = this->velocity->begin(Model::spatial_dimension);
for (UInt n = 0; m_it != m_end; ++n, ++m_it, ++v_it) {
const auto & v = *v_it;
const auto & m = *m_it;
Real mv2 = 0.;
auto is_local_node = mesh.isLocalOrMasterNode(n);
// bool is_not_pbc_slave_node = !isPBCSlaveNode(n);
auto count_node = is_local_node; // && is_not_pbc_slave_node;
if (count_node) {
for (UInt i = 0; i < Model::spatial_dimension; ++i) {
if (m(i) > std::numeric_limits<Real>::epsilon()) {
mv2 += v(i) * v(i) * m(i);
}
}
}
ekin += mv2;
}
} else if (this->getDOFManager().hasMatrix("M")) {
this->assembleMatrix("M");
Array<Real> Mv(nb_nodes, Model::spatial_dimension);
this->getDOFManager().assembleMatMulVectToArray("displacement", "M",
*this->velocity, Mv);
for (auto && data : zip(arange(nb_nodes), make_view(Mv, spatial_dimension),
make_view(*this->velocity, spatial_dimension))) {
ekin += std::get<2>(data).dot(std::get<1>(data)) *
static_cast<Real>(mesh.isLocalOrMasterNode(std::get<0>(data)));
}
} else {
AKANTU_ERROR("No function called to assemble the mass matrix.");
}
mesh.getCommunicator().allReduce(ekin, SynchronizerOperation::_sum);
AKANTU_DEBUG_OUT();
return ekin * .5;
}
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getKineticEnergy(ElementType type, UInt index) {
AKANTU_DEBUG_IN();
UInt nb_quadrature_points = getFEEngine().getNbIntegrationPoints(type);
Array<Real> vel_on_quad(nb_quadrature_points, Model::spatial_dimension);
Array<UInt> filter_element(1, 1, index);
getFEEngine().interpolateOnIntegrationPoints(*velocity, vel_on_quad,
Model::spatial_dimension, type,
_not_ghost, filter_element);
auto vit = vel_on_quad.begin(Model::spatial_dimension);
auto vend = vel_on_quad.end(Model::spatial_dimension);
Vector<Real> rho_v2(nb_quadrature_points);
Real rho = materials[material_index(type)(index)]->getRho();
for (UInt q = 0; vit != vend; ++vit, ++q) {
rho_v2(q) = rho * vit->dot(*vit);
}
AKANTU_DEBUG_OUT();
return .5 * getFEEngine().integrate(rho_v2, type, index);
}
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getExternalWork() {
AKANTU_DEBUG_IN();
auto ext_force_it = external_force->begin(Model::spatial_dimension);
auto int_force_it = internal_force->begin(Model::spatial_dimension);
auto boun_it = blocked_dofs->begin(Model::spatial_dimension);
decltype(ext_force_it) incr_or_velo_it;
if (this->method == _static) {
incr_or_velo_it =
this->displacement_increment->begin(Model::spatial_dimension);
} else {
incr_or_velo_it = this->velocity->begin(Model::spatial_dimension);
}
Real work = 0.;
UInt nb_nodes = this->mesh.getNbNodes();
for (UInt n = 0; n < nb_nodes;
++n, ++ext_force_it, ++int_force_it, ++boun_it, ++incr_or_velo_it) {
const auto & int_force = *int_force_it;
const auto & ext_force = *ext_force_it;
const auto & boun = *boun_it;
const auto & incr_or_velo = *incr_or_velo_it;
bool is_local_node = this->mesh.isLocalOrMasterNode(n);
// bool is_not_pbc_slave_node = !this->isPBCSlaveNode(n);
bool count_node = is_local_node; // && is_not_pbc_slave_node;
if (count_node) {
for (UInt i = 0; i < Model::spatial_dimension; ++i) {
if (boun(i)) {
work -= int_force(i) * incr_or_velo(i);
} else {
work += ext_force(i) * incr_or_velo(i);
}
}
}
}
mesh.getCommunicator().allReduce(work, SynchronizerOperation::_sum);
if (this->method != _static) {
work *= this->getTimeStep();
}
AKANTU_DEBUG_OUT();
return work;
}
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getEnergy(const std::string & energy_id) {
AKANTU_DEBUG_IN();
if (energy_id == "kinetic") {
return getKineticEnergy();
}
if (energy_id == "external work") {
return getExternalWork();
}
Real energy = 0.;
for (auto & material : materials) {
energy += material->getEnergy(energy_id);
}
/// reduction sum over all processors
mesh.getCommunicator().allReduce(energy, SynchronizerOperation::_sum);
AKANTU_DEBUG_OUT();
return energy;
}
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getEnergy(const std::string & energy_id,
ElementType type, UInt index) {
AKANTU_DEBUG_IN();
if (energy_id == "kinetic") {
return getKineticEnergy(type, index);
}
UInt mat_index = this->material_index(type, _not_ghost)(index);
UInt mat_loc_num = this->material_local_numbering(type, _not_ghost)(index);
Real energy =
this->materials[mat_index]->getEnergy(energy_id, type, mat_loc_num);
AKANTU_DEBUG_OUT();
return energy;
}
/* -------------------------------------------------------------------------- */
Real SolidMechanicsModel::getEnergy(const ID & energy_id, const ID & group_id) {
auto && group = mesh.getElementGroup(group_id);
auto energy = 0.;
for (auto && type : group.elementTypes()) {
for (auto el : group.getElementsIterable(type)) {
energy += getEnergy(energy_id, el);
}
}
/// reduction sum over all processors
mesh.getCommunicator().allReduce(energy, SynchronizerOperation::_sum);
return energy;
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::onElementsAdded(const Array<Element> & element_list,
const NewElementsEvent & event) {
AKANTU_DEBUG_IN();
this->material_index.initialize(mesh, _element_kind = _ek_not_defined,
_with_nb_element = true,
_default_value = UInt(-1));
this->material_local_numbering.initialize(
mesh, _element_kind = _ek_not_defined, _with_nb_element = true,
_default_value = UInt(-1));
ElementTypeMapArray<UInt> filter("new_element_filter", this->getID());
for (const auto & elem : element_list) {
if (mesh.getSpatialDimension(elem.type) != spatial_dimension) {
continue;
}
if (!filter.exists(elem.type, elem.ghost_type)) {
filter.alloc(0, 1, elem.type, elem.ghost_type);
}
filter(elem.type, elem.ghost_type).push_back(elem.element);
}
// this fails in parallel if the event is sent on facet between constructor
// and initFull \todo: to debug...
this->assignMaterialToElements(&filter);
for (auto & material : materials) {
material->onElementsAdded(element_list, event);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::onElementsRemoved(
const Array<Element> & element_list,
const ElementTypeMapArray<UInt> & new_numbering,
const RemovedElementsEvent & event) {
for (auto & material : materials) {
material->onElementsRemoved(element_list, new_numbering, event);
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::onNodesAdded(const Array<UInt> & nodes_list,
const NewNodesEvent & event) {
AKANTU_DEBUG_IN();
UInt nb_nodes = mesh.getNbNodes();
if (displacement) {
displacement->resize(nb_nodes, 0.);
++displacement_release;
}
if (mass) {
mass->resize(nb_nodes, 0.);
}
if (velocity) {
velocity->resize(nb_nodes, 0.);
}
if (acceleration) {
acceleration->resize(nb_nodes, 0.);
}
if (external_force) {
external_force->resize(nb_nodes, 0.);
}
if (internal_force) {
internal_force->resize(nb_nodes, 0.);
}
if (blocked_dofs) {
blocked_dofs->resize(nb_nodes, false);
}
if (current_position) {
current_position->resize(nb_nodes, 0.);
}
if (previous_displacement) {
previous_displacement->resize(nb_nodes, 0.);
}
if (displacement_increment) {
displacement_increment->resize(nb_nodes, 0.);
}
for (auto & material : materials) {
material->onNodesAdded(nodes_list, event);
}
need_to_reassemble_lumped_mass = true;
need_to_reassemble_mass = true;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::onNodesRemoved(const Array<UInt> & /*element_list*/,
const Array<UInt> & new_numbering,
const RemovedNodesEvent & /*event*/) {
if (displacement) {
mesh.removeNodesFromArray(*displacement, new_numbering);
++displacement_release;
}
if (mass) {
mesh.removeNodesFromArray(*mass, new_numbering);
}
if (velocity) {
mesh.removeNodesFromArray(*velocity, new_numbering);
}
if (acceleration) {
mesh.removeNodesFromArray(*acceleration, new_numbering);
}
if (internal_force) {
mesh.removeNodesFromArray(*internal_force, new_numbering);
}
if (external_force) {
mesh.removeNodesFromArray(*external_force, new_numbering);
}
if (blocked_dofs) {
mesh.removeNodesFromArray(*blocked_dofs, new_numbering);
}
// if (increment_acceleration)
// mesh.removeNodesFromArray(*increment_acceleration, new_numbering);
if (displacement_increment) {
mesh.removeNodesFromArray(*displacement_increment, new_numbering);
}
if (previous_displacement) {
mesh.removeNodesFromArray(*previous_displacement, new_numbering);
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::printself(std::ostream & stream, int indent) const {
std::string space(indent, AKANTU_INDENT);
stream << space << "Solid Mechanics Model [" << std::endl;
stream << space << " + id : " << id << std::endl;
stream << space << " + spatial dimension : " << Model::spatial_dimension
<< std::endl;
stream << space << " + fem [" << std::endl;
getFEEngine().printself(stream, indent + 2);
stream << space << " ]" << std::endl;
stream << space << " + nodals information [" << std::endl;
displacement->printself(stream, indent + 2);
if (velocity) {
velocity->printself(stream, indent + 2);
}
if (acceleration) {
acceleration->printself(stream, indent + 2);
}
if (mass) {
mass->printself(stream, indent + 2);
}
external_force->printself(stream, indent + 2);
internal_force->printself(stream, indent + 2);
blocked_dofs->printself(stream, indent + 2);
stream << space << " ]" << std::endl;
stream << space << " + material information [" << std::endl;
material_index.printself(stream, indent + 2);
stream << space << " ]" << std::endl;
stream << space << " + materials [" << std::endl;
for (const auto & material : materials) {
material->printself(stream, indent + 2);
}
stream << space << " ]" << std::endl;
stream << space << "]" << std::endl;
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::initializeNonLocal() {
this->non_local_manager->synchronize(*this, SynchronizationTag::_material_id);
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::insertIntegrationPointsInNeighborhoods(
GhostType ghost_type) {
for (auto & mat : materials) {
MaterialNonLocalInterface * mat_non_local;
if ((mat_non_local =
dynamic_cast<MaterialNonLocalInterface *>(mat.get())) == nullptr) {
continue;
}
ElementTypeMapArray<Real> quadrature_points_coordinates(
"quadrature_points_coordinates_tmp_nl", this->id);
quadrature_points_coordinates.initialize(this->getFEEngine(),
_nb_component = spatial_dimension,
_ghost_type = ghost_type);
for (const auto & type : quadrature_points_coordinates.elementTypes(
Model::spatial_dimension, ghost_type)) {
this->getFEEngine().computeIntegrationPointsCoordinates(
quadrature_points_coordinates(type, ghost_type), type, ghost_type);
}
mat_non_local->initMaterialNonLocal();
mat_non_local->insertIntegrationPointsInNeighborhoods(
ghost_type, quadrature_points_coordinates);
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::computeNonLocalStresses(GhostType ghost_type) {
for (auto & mat : materials) {
if (not aka::is_of_type<MaterialNonLocalInterface>(*mat)) {
continue;
}
auto & mat_non_local = dynamic_cast<MaterialNonLocalInterface &>(*mat);
mat_non_local.computeNonLocalStresses(ghost_type);
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::updateLocalInternal(
ElementTypeMapReal & internal_flat, GhostType ghost_type,
ElementKind kind) {
const ID field_name = internal_flat.getName();
for (auto & material : materials) {
if (material->isInternal<Real>(field_name, kind)) {
material->flattenInternal(field_name, internal_flat, ghost_type, kind);
}
}
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::updateNonLocalInternal(
ElementTypeMapReal & internal_flat, GhostType ghost_type,
ElementKind kind) {
const ID field_name = internal_flat.getName();
for (auto & mat : materials) {
if (not aka::is_of_type<MaterialNonLocalInterface>(*mat)) {
continue;
}
auto & mat_non_local = dynamic_cast<MaterialNonLocalInterface &>(*mat);
mat_non_local.updateNonLocalInternals(internal_flat, field_name, ghost_type,
kind);
}
}
/* -------------------------------------------------------------------------- */
FEEngine & SolidMechanicsModel::getFEEngineBoundary(const ID & name) {
return getFEEngineClassBoundary<MyFEEngineType>(name);
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::splitElementByMaterial(
const Array<Element> & elements,
std::vector<Array<Element>> & elements_per_mat) const {
for (const auto & el : elements) {
Element mat_el = el;
mat_el.element = this->material_local_numbering(el);
elements_per_mat[this->material_index(el)].push_back(mat_el);
}
}
/* -------------------------------------------------------------------------- */
UInt SolidMechanicsModel::getNbData(const Array<Element> & elements,
const SynchronizationTag & tag) const {
AKANTU_DEBUG_IN();
UInt size = 0;
UInt nb_nodes_per_element = 0;
for (const Element & el : elements) {
nb_nodes_per_element += Mesh::getNbNodesPerElement(el.type);
}
switch (tag) {
case SynchronizationTag::_material_id: {
size += elements.size() * sizeof(UInt);
break;
}
case SynchronizationTag::_smm_mass: {
size += nb_nodes_per_element * sizeof(Real) *
Model::spatial_dimension; // mass vector
break;
}
case SynchronizationTag::_smm_for_gradu: {
size += nb_nodes_per_element * Model::spatial_dimension *
sizeof(Real); // displacement
break;
}
case SynchronizationTag::_smm_boundary: {
// force, displacement, boundary
size += nb_nodes_per_element * Model::spatial_dimension *
(2 * sizeof(Real) + sizeof(bool));
break;
}
case SynchronizationTag::_for_dump: {
// displacement, velocity, acceleration, residual, force
size += nb_nodes_per_element * Model::spatial_dimension * sizeof(Real) * 5;
break;
}
default: {
}
}
if (tag != SynchronizationTag::_material_id) {
splitByMaterial(elements, [&](auto && mat, auto && elements) {
size += mat.getNbData(elements, tag);
});
}
AKANTU_DEBUG_OUT();
return size;
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::packData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) const {
AKANTU_DEBUG_IN();
switch (tag) {
case SynchronizationTag::_material_id: {
packElementalDataHelper(material_index, buffer, elements, false,
getFEEngine());
break;
}
case SynchronizationTag::_smm_mass: {
packNodalDataHelper(*mass, buffer, elements, mesh);
break;
}
case SynchronizationTag::_smm_for_gradu: {
packNodalDataHelper(*displacement, buffer, elements, mesh);
break;
}
case SynchronizationTag::_for_dump: {
packNodalDataHelper(*displacement, buffer, elements, mesh);
packNodalDataHelper(*velocity, buffer, elements, mesh);
packNodalDataHelper(*acceleration, buffer, elements, mesh);
packNodalDataHelper(*internal_force, buffer, elements, mesh);
packNodalDataHelper(*external_force, buffer, elements, mesh);
break;
}
case SynchronizationTag::_smm_boundary: {
packNodalDataHelper(*external_force, buffer, elements, mesh);
packNodalDataHelper(*velocity, buffer, elements, mesh);
packNodalDataHelper(*blocked_dofs, buffer, elements, mesh);
break;
}
default: {
}
}
if (tag != SynchronizationTag::_material_id) {
splitByMaterial(elements, [&](auto && mat, auto && elements) {
mat.packData(buffer, elements, tag);
});
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) {
AKANTU_DEBUG_IN();
switch (tag) {
case SynchronizationTag::_material_id: {
for (auto && element : elements) {
UInt recv_mat_index;
buffer >> recv_mat_index;
UInt & mat_index = material_index(element);
if (mat_index != UInt(-1)) {
continue;
}
// add ghosts element to the correct material
mat_index = recv_mat_index;
UInt index = materials[mat_index]->addElement(element);
material_local_numbering(element) = index;
}
break;
}
case SynchronizationTag::_smm_mass: {
unpackNodalDataHelper(*mass, buffer, elements, mesh);
break;
}
case SynchronizationTag::_smm_for_gradu: {
unpackNodalDataHelper(*displacement, buffer, elements, mesh);
break;
}
case SynchronizationTag::_for_dump: {
unpackNodalDataHelper(*displacement, buffer, elements, mesh);
unpackNodalDataHelper(*velocity, buffer, elements, mesh);
unpackNodalDataHelper(*acceleration, buffer, elements, mesh);
unpackNodalDataHelper(*internal_force, buffer, elements, mesh);
unpackNodalDataHelper(*external_force, buffer, elements, mesh);
break;
}
case SynchronizationTag::_smm_boundary: {
unpackNodalDataHelper(*external_force, buffer, elements, mesh);
unpackNodalDataHelper(*velocity, buffer, elements, mesh);
unpackNodalDataHelper(*blocked_dofs, buffer, elements, mesh);
break;
}
default: {
}
}
if (tag != SynchronizationTag::_material_id) {
splitByMaterial(elements, [&](auto && mat, auto && elements) {
mat.unpackData(buffer, elements, tag);
});
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
UInt SolidMechanicsModel::getNbData(const Array<UInt> & dofs,
const SynchronizationTag & tag) const {
AKANTU_DEBUG_IN();
UInt size = 0;
// UInt nb_nodes = mesh.getNbNodes();
switch (tag) {
case SynchronizationTag::_smm_uv: {
size += sizeof(Real) * Model::spatial_dimension * 2;
break;
}
case SynchronizationTag::_smm_res: /* FALLTHRU */
case SynchronizationTag::_smm_mass: {
size += sizeof(Real) * Model::spatial_dimension;
break;
}
case SynchronizationTag::_for_dump: {
size += sizeof(Real) * Model::spatial_dimension * 5;
break;
}
default: {
AKANTU_ERROR("Unknown ghost synchronization tag : " << tag);
}
}
AKANTU_DEBUG_OUT();
return size * dofs.size();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::packData(CommunicationBuffer & buffer,
const Array<UInt> & dofs,
const SynchronizationTag & tag) const {
AKANTU_DEBUG_IN();
switch (tag) {
case SynchronizationTag::_smm_uv: {
packDOFDataHelper(*displacement, buffer, dofs);
packDOFDataHelper(*velocity, buffer, dofs);
break;
}
case SynchronizationTag::_smm_res: {
packDOFDataHelper(*internal_force, buffer, dofs);
break;
}
case SynchronizationTag::_smm_mass: {
packDOFDataHelper(*mass, buffer, dofs);
break;
}
case SynchronizationTag::_for_dump: {
packDOFDataHelper(*displacement, buffer, dofs);
packDOFDataHelper(*velocity, buffer, dofs);
packDOFDataHelper(*acceleration, buffer, dofs);
packDOFDataHelper(*internal_force, buffer, dofs);
packDOFDataHelper(*external_force, buffer, dofs);
break;
}
default: {
AKANTU_ERROR("Unknown ghost synchronization tag : " << tag);
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void SolidMechanicsModel::unpackData(CommunicationBuffer & buffer,
const Array<UInt> & dofs,
const SynchronizationTag & tag) {
AKANTU_DEBUG_IN();
switch (tag) {
case SynchronizationTag::_smm_uv: {
unpackDOFDataHelper(*displacement, buffer, dofs);
unpackDOFDataHelper(*velocity, buffer, dofs);
break;
}
case SynchronizationTag::_smm_res: {
unpackDOFDataHelper(*internal_force, buffer, dofs);
break;
}
case SynchronizationTag::_smm_mass: {
unpackDOFDataHelper(*mass, buffer, dofs);
break;
}
case SynchronizationTag::_for_dump: {
unpackDOFDataHelper(*displacement, buffer, dofs);
unpackDOFDataHelper(*velocity, buffer, dofs);
unpackDOFDataHelper(*acceleration, buffer, dofs);
unpackDOFDataHelper(*internal_force, buffer, dofs);
unpackDOFDataHelper(*external_force, buffer, dofs);
break;
}
default: {
AKANTU_ERROR("Unknown ghost synchronization tag : " << tag);
}
}
AKANTU_DEBUG_OUT();
}
} // namespace akantu

Event Timeline