Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F95063549
phasefield.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Dec 12, 14:02
Size
10 KB
Mime Type
text/x-c
Expires
Sat, Dec 14, 14:02 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
22925755
Attached To
rAKA akantu
phasefield.cc
View Options
/**
* @file phasefield.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Fri Jun 19 2020
* @date last modification: Fri May 14 2021
*
* @brief Implementation of the common part of the phasefield class
*
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "phasefield.hh"
#include "phase_field_model.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
PhaseField
::
PhaseField
(
PhaseFieldModel
&
model
,
const
ID
&
id
)
:
Parsable
(
ParserType
::
_phasefield
,
id
),
id
(
id
),
fem
(
model
.
getFEEngine
()),
model
(
model
),
spatial_dimension
(
this
->
model
.
getSpatialDimension
()),
element_filter
(
"element_filter"
,
id
),
damage
(
"damage"
,
*
this
),
phi
(
"phi"
,
*
this
),
strain
(
"strain"
,
*
this
),
driving_force
(
"driving_force"
,
*
this
),
damage_energy
(
"damage_energy"
,
*
this
),
damage_energy_density
(
"damage_energy_density"
,
*
this
)
{
AKANTU_DEBUG_IN
();
/// for each connectivity types allocate the element filer array of the
/// material
element_filter
.
initialize
(
model
.
getMesh
(),
_spatial_dimension
=
spatial_dimension
,
_element_kind
=
_ek_regular
);
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
PhaseField
::
PhaseField
(
PhaseFieldModel
&
model
,
UInt
dim
,
const
Mesh
&
mesh
,
FEEngine
&
fe_engine
,
const
ID
&
id
)
:
Parsable
(
ParserType
::
_phasefield
,
id
),
id
(
id
),
fem
(
fe_engine
),
model
(
model
),
spatial_dimension
(
this
->
model
.
getSpatialDimension
()),
element_filter
(
"element_filter"
,
id
),
damage
(
"damage"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
phi
(
"phi"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
strain
(
"strain"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
driving_force
(
"driving_force"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
damage_energy
(
"damage_energy"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
damage_energy_density
(
"damage_energy_density"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
)
{
AKANTU_DEBUG_IN
();
/// for each connectivity types allocate the element filer array of the
/// material
element_filter
.
initialize
(
mesh
,
_spatial_dimension
=
spatial_dimension
,
_element_kind
=
_ek_regular
);
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
PhaseField
::~
PhaseField
()
=
default
;
/* -------------------------------------------------------------------------- */
void
PhaseField
::
initialize
()
{
registerParam
(
"name"
,
name
,
std
::
string
(),
_pat_parsable
|
_pat_readable
);
registerParam
(
"l0"
,
l0
,
Real
(
0.
),
_pat_parsable
|
_pat_readable
,
"length scale parameter"
);
registerParam
(
"gc"
,
g_c
,
_pat_parsable
|
_pat_readable
,
"critical local fracture energy density"
);
registerParam
(
"E"
,
E
,
_pat_parsable
|
_pat_readable
,
"Young's modulus"
);
registerParam
(
"nu"
,
nu
,
_pat_parsable
|
_pat_readable
,
"Poisson ratio"
);
damage
.
initialize
(
1
);
phi
.
initialize
(
1
);
driving_force
.
initialize
(
1
);
strain
.
initialize
(
spatial_dimension
*
spatial_dimension
);
damage_energy_density
.
initialize
(
1
);
damage_energy
.
initialize
(
spatial_dimension
*
spatial_dimension
);
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
initPhaseField
()
{
AKANTU_DEBUG_IN
();
this
->
phi
.
initializeHistory
();
this
->
resizeInternals
();
updateInternalParameters
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
resizeInternals
()
{
AKANTU_DEBUG_IN
();
for
(
auto
it
=
internal_vectors_real
.
begin
();
it
!=
internal_vectors_real
.
end
();
++
it
)
{
it
->
second
->
resize
();
}
for
(
auto
it
=
internal_vectors_uint
.
begin
();
it
!=
internal_vectors_uint
.
end
();
++
it
)
{
it
->
second
->
resize
();
}
for
(
auto
it
=
internal_vectors_bool
.
begin
();
it
!=
internal_vectors_bool
.
end
();
++
it
)
{
it
->
second
->
resize
();
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
updateInternalParameters
()
{
this
->
lambda
=
this
->
nu
*
this
->
E
/
((
1
+
this
->
nu
)
*
(
1
-
2
*
this
->
nu
));
this
->
mu
=
this
->
E
/
(
2
*
(
1
+
this
->
nu
));
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
computeAllDrivingForces
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
model
.
getSpatialDimension
();
for
(
const
auto
&
type
:
element_filter
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
auto
&
elem_filter
=
element_filter
(
type
,
ghost_type
);
if
(
elem_filter
.
empty
())
{
continue
;
}
computeDrivingForce
(
type
,
ghost_type
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
assembleInternalForces
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
Array
<
Real
>
&
internal_force
=
model
.
getInternalForce
();
for
(
auto
type
:
element_filter
.
elementTypes
(
_ghost_type
=
ghost_type
))
{
auto
&
elem_filter
=
element_filter
(
type
,
ghost_type
);
if
(
elem_filter
.
empty
())
{
continue
;
}
auto
nb_element
=
elem_filter
.
size
();
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_quadrature_points
=
fem
.
getNbIntegrationPoints
(
type
,
ghost_type
);
Array
<
Real
>
nt_driving_force
(
nb_quadrature_points
,
nb_nodes_per_element
);
fem
.
computeNtb
(
driving_force
(
type
,
ghost_type
),
nt_driving_force
,
type
,
ghost_type
,
elem_filter
);
Array
<
Real
>
int_nt_driving_force
(
nb_element
,
nb_nodes_per_element
);
fem
.
integrate
(
nt_driving_force
,
int_nt_driving_force
,
nb_nodes_per_element
,
type
,
ghost_type
,
elem_filter
);
model
.
getDOFManager
().
assembleElementalArrayLocalArray
(
int_nt_driving_force
,
internal_force
,
type
,
ghost_type
,
1
,
elem_filter
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
assembleStiffnessMatrix
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_INFO
(
"Assemble the new stiffness matrix"
);
for
(
auto
type
:
element_filter
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
auto
&
elem_filter
=
element_filter
(
type
,
ghost_type
);
if
(
elem_filter
.
empty
())
{
AKANTU_DEBUG_OUT
();
return
;
}
auto
nb_element
=
elem_filter
.
size
();
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_quadrature_points
=
fem
.
getNbIntegrationPoints
(
type
,
ghost_type
);
auto
nt_b_n
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
*
nb_quadrature_points
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"N^t*b*N"
);
auto
bt_d_b
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
*
nb_quadrature_points
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"B^t*D*B"
);
// damage_energy_density_on_qpoints = gc/l0 + phi = scalar
auto
&
damage_energy_density_vect
=
damage_energy_density
(
type
,
ghost_type
);
// damage_energy_on_qpoints = gc*l0 = scalar
auto
&
damage_energy_vect
=
damage_energy
(
type
,
ghost_type
);
fem
.
computeBtDB
(
damage_energy_vect
,
*
bt_d_b
,
2
,
type
,
ghost_type
,
elem_filter
);
fem
.
computeNtbN
(
damage_energy_density_vect
,
*
nt_b_n
,
type
,
ghost_type
,
elem_filter
);
/// compute @f$ K_{\grad d} = \int_e \mathbf{N}^t * \mathbf{w} *
/// \mathbf{N}@f$
auto
K_n
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"K_n"
);
fem
.
integrate
(
*
nt_b_n
,
*
K_n
,
nb_nodes_per_element
*
nb_nodes_per_element
,
type
,
ghost_type
,
elem_filter
);
model
.
getDOFManager
().
assembleElementalMatricesToMatrix
(
"K"
,
"damage"
,
*
K_n
,
type
,
_not_ghost
,
_symmetric
,
elem_filter
);
/// compute @f$ K_{\grad d} = \int_e \mathbf{B}^t * \mathbf{W} *
/// \mathbf{B}@f$
auto
K_b
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"K_b"
);
fem
.
integrate
(
*
bt_d_b
,
*
K_b
,
nb_nodes_per_element
*
nb_nodes_per_element
,
type
,
ghost_type
,
elem_filter
);
model
.
getDOFManager
().
assembleElementalMatricesToMatrix
(
"K"
,
"damage"
,
*
K_b
,
type
,
_not_ghost
,
_symmetric
,
elem_filter
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
beforeSolveStep
()
{
this
->
savePreviousState
();
this
->
computeAllDrivingForces
(
_not_ghost
);
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
afterSolveStep
()
{}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
savePreviousState
()
{
AKANTU_DEBUG_IN
();
for
(
auto
pair
:
internal_vectors_real
)
{
if
(
pair
.
second
->
hasHistory
())
{
pair
.
second
->
saveCurrentValues
();
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
(
indent
,
AKANTU_INDENT
);
std
::
string
type
=
getID
().
substr
(
getID
().
find_last_of
(
':'
)
+
1
);
stream
<<
space
<<
"PhaseField Material "
<<
type
<<
" ["
<<
std
::
endl
;
Parsable
::
printself
(
stream
,
indent
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
}
// namespace akantu
Event Timeline
Log In to Comment