Page MenuHomec4science

explicit_heat_transfer.cc
No OneTemporary

File Metadata

Created
Tue, Dec 24, 17:00

explicit_heat_transfer.cc

/**
* @file explicit_heat_transfer.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
*
* @date creation: Fri Jun 06 2014
* @date last modification: Fri Jun 06 2014
*
* @brief test of the class HeatTransferModel on the 3d cube
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "heat_transfer_model.hh"
#include "pbc_synchronizer.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
/* -------------------------------------------------------------------------- */
akantu::UInt spatial_dimension = 2;
std::string base_name;
int main(int argc, char *argv[])
{
akantu::initialize("material.dat", argc, argv);
//create mesh
akantu::Mesh mesh(spatial_dimension);
mesh.read("square.msh");
akantu::HeatTransferModel model(mesh);
//initialize everything
model.initFull();
//assemble the lumped capacity
model.assembleCapacityLumped();
//get stable time step
akantu::Real time_step = model.getStableTimeStep()*0.8;
cout<<"time step is:" << time_step << endl;
model.setTimeStep(time_step);
//boundary conditions
const akantu::Array<akantu::Real> & nodes = model.getFEEngine().getMesh().getNodes();
akantu::Array<bool> & boundary = model.getBlockedDOFs();
akantu::Array<akantu::Real> & temperature = model.getTemperature();
double length;
length = 1.;
akantu::UInt nb_nodes = model.getFEEngine().getMesh().getNbNodes();
for (akantu::UInt i = 0; i < nb_nodes; ++i) {
temperature(i) = 100.;
akantu::Real dx = nodes(i,0) - length/4.;
akantu::Real dy = 0.0;
akantu::Real dz = 0.0;
if (spatial_dimension > 1) dy = nodes(i,1) - length/4.;
if (spatial_dimension == 3) dz = nodes(i,2) - length/4.;
akantu::Real d = sqrt(dx*dx + dy*dy + dz*dz);
// if(dx < 0.0){
if(d < 0.1){
boundary(i) = true;
temperature(i) = 300.;
}
}
model.updateResidual();
model.setBaseName("heat_transfer_square2d");
model.addDumpField("temperature" );
model.addDumpField("temperature_rate");
model.addDumpField("residual" );
model.addDumpField("capacity_lumped" );
model.dump();
//main loop
int max_steps = 15000;
for(int i=0; i<max_steps; i++)
{
model.explicitPred();
model.updateResidual();
model.solveExplicitLumped();
model.explicitCorr();
if(i % 100 == 0) model.dump();
if(i % 10 == 0)
std::cout << "Step " << i << "/" << max_steps << std::endl;
}
cout<< "\n\n Stable Time Step is : " << time_step << "\n \n" <<endl;
return 0;
}

Event Timeline