Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97620366
darmadi.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jan 5, 19:12
Size
2 KB
Mime Type
text/x-python
Expires
Tue, Jan 7, 19:12 (9 h, 11 m)
Engine
blob
Format
Raw Data
Handle
23359992
Attached To
R11910 Additive Manufacturing Work
darmadi.py
View Options
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 10 12:16:05 2021
@author: ekinkubilay
"""
import
numpy
as
np
import
matplotlib.pyplot
as
plt
velocity
=
1
t
=
0.1
alpha
=
1
upper
=
velocity
**
2
*
t
/
(
4
*
alpha
)
upper_limit
=
np
.
min
([
upper
,
5
])
lower_limit
=
0
V
=
velocity
/
(
2
*
alpha
)
N
=
20
points
=
mesh
.
coordinates
()
source
=
np
.
zeros
(
np
.
shape
(
mesh
.
coordinates
()))
source
[:]
=
np
.
array
([
-
1.8
,
0
,
4
])
disp
=
source
-
points
R_squared
=
(
disp
*
disp
)
.
sum
(
1
)
R
=
np
.
sqrt
(
R_squared
)
u
=
R
*
V
integral_value
=
np
.
zeros
(
len
(
points
))
for
i
,
j
in
enumerate
(
points
):
integral_value
[
i
]
=
integrate
(
function
,
u
[
i
],
0.000001
,
upper_limit
)[
-
1
]
N
=
200
def
function
(
w
,
u
):
return
np
.
exp
(
-
w
-
((
u
**
2
)
/
(
4
*
w
)))
/
(
w
**
1.5
)
def
integrate
(
func
,
u
,
lower
,
upper
):
integral
=
np
.
zeros
(
N
-
1
)
delta
=
(
upper
-
lower
)
/
N
temp
=
0
for
i
in
range
(
N
-
1
):
temp
+=
(
func
(
lower
+
(
i
+
1
)
*
delta
,
u
)
+
func
(
lower
+
i
*
delta
,
u
))
*
0.5
*
delta
integral
[
i
]
=
temp
return
integral
omega
=
np
.
linspace
(
0
,
5
,
N
)
u
=
1
u_range
=
np
.
array
([
3
,
1
,
0.5
,
0.1
])
for
u
in
u_range
:
f_omega
=
function
(
omega
,
u
)
f_omega
[
0
]
=
0
#plt.plot(omega , f_omega, marker='.')
f_int
=
integrate
(
function
,
u
,
0.00001
,
5
)
plt
.
plot
(
omega
[:
-
1
],
f_int
,
marker
=
'.'
,
label
=
'trapezoid'
)
print
(
f_int
[
-
1
])
simpson
=
integrate2
(
function
,
u
,
0.00001
,
5
)
summation
=
np
.
zeros
(
N
)
for
i
in
range
(
N
):
summation
[
i
]
=
np
.
sum
(
simpson
[
0
:
i
])
plt
.
plot
(
omega
,
summation
,
marker
=
'x'
,
label
=
'simpson'
)
plt
.
legend
()
def
integrate2
(
func
,
u
,
lower
,
upper
):
B
=
np
.
ones
(
N
)
B
[
1
:
-
1
:
2
]
=
4
B
[
2
:
-
1
:
2
]
=
2
w
=
np
.
linspace
(
lower
,
upper
,
N
)
integral_value
=
B
.
dot
(
func
(
u
,
w
))
return
integral_value
*
(
upper
-
lower
)
/
(
3
*
N
)
simpson
=
integrate2
(
function
,
1
,
0.000001
,
5
)
summation
=
np
.
zeros
(
N
)
for
i
in
range
(
N
):
summation
[
i
]
=
np
.
sum
(
simpson
[
0
:
i
])
plt
.
plot
(
omega
,
summation
)
trial
=
np
.
zeros
(
N
-
1
)
for
j
,
i
in
enumerate
(
omega
[
1
:]):
trial
[
j
]
=
integrate2
(
function
,
u
,
0.000001
,
i
)
plt
.
plot
(
omega
[
1
:],
trial
)
N
=
20
B
=
np
.
ones
(
N
)
B
[
1
:
-
1
:
2
]
=
4
B
[
2
:
-
1
:
2
]
=
2
print
(
B
)
Event Timeline
Log In to Comment