Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97719159
gradient2.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Jan 6, 06:08
Size
8 KB
Mime Type
text/x-c
Expires
Wed, Jan 8, 06:08 (11 h, 52 m)
Engine
blob
Format
Raw Data
Handle
23445149
Attached To
R1448 Lenstool-HPC
gradient2.cpp
View Options
/**
Lenstool-HPC: HPC based massmodeling software and Lens-map generation
Copyright (C) 2017 Christoph Schaefer, EPFL (christophernstrerne.schaefer@epfl.ch), Gilles Fourestey (gilles.fourestey@epfl.ch)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
@brief: Function for second order computation on CPU to compare with GPUs
*/
#include <iostream>
#include <iomanip>
#include <string.h>
//#include <cuda_runtime.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <map>
/*
#ifdef __AVX__
#include "simd_math_avx.h"
#endif
#ifdef __AVX512F__
#include "simd_math_avx512f.h"
#endif
*/
#include "structure_hpc.hpp"
#include "gradient2.hpp"
//lenstool fct
/*
* derivates of I0.5 KK
* Parameters :
* - (x,y) is the computation position of the potential
* - eps is the ellepticity (a-b)/(a+b)
* - rc is the core radius
* - b0 asymptotic Einstein radius E0. (6pi*vdisp^2/c^2)
*
* Return a the 4 second derivatives of the PIEMD potential
*/
inline
void mdci05_hpc(type_t x, type_t y, type_t eps, type_t rc, type_t b0, struct matrix *res)
{
type_t ci, sqe, cx1, cxro, cyro, wrem;
type_t didyre, didyim, didxre; // didxim;
type_t cx1inv, den1, num2, den2;
//
sqe = sqrt(eps);
cx1 = (1. - eps)/(1. + eps);
cx1inv = 1./cx1;
//
cxro = (1. + eps)*(1. + eps); /* rem^2=x^2/(1+e^2) + y^2/(1-e^2) Eq 2.3.6*/
cyro = (1. - eps)*(1. - eps);
ci = 0.5*(1. - eps * eps) / sqe;
wrem = sqrt(rc*rc + x*x/cxro + y*y/cyro); /*wrem^2=w^2+rem^2 with w core radius*/
den1 = 2.*sqe*wrem - y*cx1inv;
den1 = cx1*cx1*x*x + den1*den1;
num2 = 2.*rc*sqe - y;
den2 = x*x + num2*num2;
//
didxre = ci*( cx1*(2.*sqe*x*x/cxro/wrem - 2.*sqe*wrem + y*cx1inv)/den1 + num2/den2 );
didyre = ci*( (2.*sqe*x*y*cx1/cyro/wrem - x)/den1 + x/den2 );
didyim = ci * ( (2.* sqe * wrem * cx1inv - y * cx1inv * cx1inv - 4.*eps*y/cyro +
2.* sqe * y * y / cyro / wrem * cx1inv)/den1 - num2/den2 );
//
res->a = b0 * didxre;
res->b = res->d = b0 * didyre; //(didyre+didxim)/2.;
res->c = b0 * didyim;
// return(res);
}
//
void printmat(matrix A){
std::cerr << A.a << " " << A.b << " " << A.c << " " << A.d << std::endl;
}
//
// SOA versions, vectorizable
//
//
struct matrix module_potentialDerivatives_totalGradient2_81_SOA_v2(const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos)
{
asm volatile("# module_potentialDerivatives_totalGradient2_81_SOA begins");
//std::cout << "# module_potentialDerivatives_totalGradient_81_SOA begins" << std::endl;
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
type_t t05;
type_t RR;
//
struct matrix grad2, clump, clumpcore, clumpcut;
struct point true_coord, true_coord_rotation;
//
grad2.a = clump.a = 0;
grad2.b = clump.b = 0;
grad2.c = clump.c = 0;
grad2.d = clump.d = 0;
//
for(int i = shalos; i < shalos + nhalos; i++)
{
//if (lens->ellipticity_potential[i] < 0.0001) printf("halo = %d, ellipticity_potential = %f\n", i, lens->ellipticity_potential[i]);
//if(lens->ellipticity_potential[i] > 0.0001)
if (true)
{
//True coord
true_coord.x = pImage->x - lens->position_x[i];
true_coord.y = pImage->y - lens->position_y[i];
//
//std::cerr << "start" << std::endl;
//Rotation
type_t cose = lens->anglecos[i];
type_t sine = lens->anglesin[i];
//
type_t x = true_coord.x*cose + true_coord.y*sine;
type_t y = true_coord.y*cose - true_coord.x*sine;
// 81 comput
t05 = lens->rcut[i] / (lens->rcut[i] - lens->rcore[i]);
mdci05_hpc(x, y, lens->ellipticity_potential[i], lens->rcore[i], lens->b0[i], &clumpcore);
mdci05_hpc(x, y, lens->ellipticity_potential[i], lens->rcut[i], lens->b0[i], &clumpcut);
//printf("X %f Y %f Ga: %f %f\n",true_coord.x ,true_coord.y , clumpcore.a, clumpcut.a);
//printf("X %f Y %f Gb: %f %f\n",true_coord.x ,true_coord.y, clumpcore.b, clumpcut.b);
//printf("X %f Y %f Gc: %f %f\n", true_coord.x ,true_coord.y,clumpcore.c, clumpcut.c);
//printf("X %f Y %f Gd: %f %f\n",true_coord.x ,true_coord.y, clumpcore.d, clumpcut.d);
//
clumpcore.a = t05 * (clumpcore.a - clumpcut.a);
clumpcore.b = t05 * (clumpcore.b - clumpcut.b);
clumpcore.c = t05 * (clumpcore.c - clumpcut.c);
clumpcore.d = t05 * (clumpcore.d - clumpcut.d);
//printmat(clumpcore);
//printf("X %f Y %f Ga: %f %f\n",pImage->x ,pImage->y , clumpcore.a, t05);
//printf("X %f Y %f Gb: %f %f\n",pImage->x ,pImage->y, clumpcore.b, clumpcut.b);
//printf("X %f Y %f Gc: %f %f\n",pImage->x ,pImage->y, clumpcore.c, clumpcut.c);
//printf("X %f Y %f Gd: %f %f\n",pImage->x ,pImage->y, clumpcore.d, clumpcut.d);
//rotation matrix 1
clumpcut.a = clumpcore.a * cose + clumpcore.b * -sine;
clumpcut.b = clumpcore.a * sine + clumpcore.b * cose;
clumpcut.c = clumpcore.d * sine + clumpcore.c * cose;
clumpcut.d = clumpcore.d * cose + clumpcore.c * -sine;
//printf("X %f Y %f theta: %f %f %f\n",pImage->x ,pImage->y,lens->ellipticity_angle[i], cose, sine);
//printmat(clumpcut);
//rotation matrix 2
clump.a = cose*clumpcut.a - sine*clumpcut.d;
clump.b = cose*clumpcut.b - sine*clumpcut.c;
clump.c = sine*clumpcut.b + cose*clumpcut.c;
clump.d = sine*clumpcut.a + cose*clumpcut.d;
//
//printf("X %f Y %f Ga: %f \n",pImage->x ,pImage->y , clump.a );
//printf("X %f Y %f Gb: %f \n",pImage->x ,pImage->y, clump.b );
//printf("X %f Y %f Gc: %f \n",pImage->x ,pImage->y, clump.c);
//printf("X %f Y %f Gd: %f \n",pImage->x ,pImage->y, clump.d );
//printmat(clump);
//
grad2.a += clump.a;
grad2.b += clump.b;
grad2.c += clump.c;
grad2.d += clump.d;
}
else if((RR = true_coord.x * true_coord.x + true_coord.y * true_coord.y) > 0.)
{
// Circular dPIE Elliasdottir 2007 Eq A23 slighly modified for t05
type_t X,Y,z,p,t05;
X = lens->rcore[i];
Y = lens->rcut[i];
t05 = lens->b0[i] * Y / (Y - X); // 1/u because t05/sqrt(u) and normalised Q/sqrt(u)
z = sqrt(RR + X * X) - X - sqrt(RR + Y * Y) + Y; // R*dphi/dR
X = RR / X;
Y = RR / Y;
p = (1. - 1. / sqrt(1. + X / lens->rcore[i])) / X - (1. - 1. / sqrt(1. + Y / lens->rcut[i])) / Y; // d2phi/dR2
X = true_coord.x * true_coord.x / RR;
Y = true_coord.y * true_coord.y / RR;
clump.a = t05 * (p * X + z * Y / RR);
clump.c = t05 * (p * Y + z * X / RR);
X = true_coord.x * true_coord.y / RR;
clump.b = clump.d = t05 * (p * X - z * X / RR);
grad2.a += clump.a;
grad2.b += clump.b;
grad2.c += clump.c;
grad2.d += clump.d;
}
else
{
clump.a = clump.c = lens->b0[i] / lens->rcore[i]/ 2.;
clump.b = clump.d = 0.;
grad2.a += clump.a;
grad2.b += clump.b;
grad2.c += clump.c;
grad2.d += clump.d;
}
}
//
return(grad2);
}
//
//This natrix handles the calling of the gradient functions for the different type without losing time to switch or if condition
//
typedef struct matrix (*halo_g2_func_t) (const struct point *pImage, const struct Potential_SOA *lens, int shalos, int nhalos);
halo_g2_func_t halo_g2_func[100] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, module_potentialDerivatives_totalGradient2_81_SOA_v2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
//
//
//
struct matrix module_potentialDerivatives_totalGradient2_SOA(const struct point *pImage, const struct Potential_SOA *lens, int nhalos)
{
struct matrix grad2, clumpgrad;
//
grad2.a = clumpgrad.a = 0;
grad2.b = clumpgrad.b = 0;
grad2.c = clumpgrad.c = 0;
grad2.d = clumpgrad.d = 0;
//
int shalos = 0;
while (shalos < nhalos)
{
int lens_type = lens->type[shalos];
int count = 1;
while (lens->type[shalos + count] == lens_type and shalos + count < nhalos) count++;
//std::cerr << "type = " << lens_type << " " << count << " " << shalos << " " << nhalos << " " << " func = " << halo_g2_func[lens_type] << std::endl;
//
clumpgrad = (*halo_g2_func[lens_type])(pImage, lens, shalos, count);
//
grad2.a += clumpgrad.a;
grad2.b += clumpgrad.b;
grad2.c += clumpgrad.c;
grad2.d += clumpgrad.d;
shalos += count;
}
return(grad2);
}
//
Event Timeline
Log In to Comment