Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97801807
module_cosmodistances.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Jan 6, 13:07
Size
10 KB
Mime Type
text/x-c
Expires
Wed, Jan 8, 13:07 (14 h, 13 m)
Engine
blob
Format
Raw Data
Handle
23414075
Attached To
R1448 Lenstool-HPC
module_cosmodistances.cpp
View Options
/**
* @file module_cosmodistances.cpp
* @Author Thomas Jalabert, EPFL (me@example.com)
* @date July 2015
* @version 0,1
* @brief Library for the computation of cosmological ratios
*
* compute the cosmological ratio of the distances between the lens and the source and the lens and the observer
*
*/
/// include header file
#include <string>
#include <stdio.h>
#include <math.h>
#include <cstring>
#include <stdlib.h>
#include "module_cosmodistances.h"
// Declare static functions that will only be used in this module
// The functions are defined further below
static double module_cosmodistances_cosmo_root(double z,cosmo_param C);
static double module_cosmodistances_sk(double x, double k);
static double module_cosmodistances_chi1(double z,cosmo_param C);
static double module_cosmodistances_chi2(double z1, double z2,cosmo_param C);
static double module_cosmodistances_chiz(double z,cosmo_param C);
static double module_cosmodistances_integral_chiz_ab(double a, double b,cosmo_param C);
// Function defintions
//==========================================================================================================
/** @brief Calculates ratio distance_(lens-source)/distance_(source)
* Calculates ratio distance_(lens-source)/distance_(source)
* @param nsetofimages number of set of images
* @param nImagesSet set of images
* @param z_lens redshift of lens
* @param source sources
* @param cosmoratio variable where result is stored
* @param cosmopar cosmological parameter
*/
void module_cosmodistances_lensSourceToSource( const int nsetofimages, int nImagesSet[], double z_lens, galaxy source[], double cosmoratio[], cosmo_param cosmopar){
//int imageCounter = 0; // Count the total number of images up to now
for(int i=0; i<nsetofimages; i++){
//printf("z_lens %f , imag.redshift %f \n" , z_lens,source[0].redshift);
cosmoratio[i]=module_cosmodistances_lensSourceToObserverSource(z_lens,source[i].redshift, cosmopar); /// lens efficiency (angular distance)
//imageCounter += (nImagesSet[i] - 1); // We add the number of images to skip to get to the next set
}
}
/** @brief Return the angular distance DA(observator(z=0),object(z)) (no unit)
* Multiply observerObject(z) by c/H0 to get the true value in Mpc.
* observerObject(z) * c/H0 = DA(0,z) = 1/(1+z) * Sk( integral( 0,z,c*dz/H(z) ) )
* @param z redshift of object
* @param cosmopar cosmological parameter
*/
double module_cosmodistances_observerObject(double z, cosmo_param cosmopar)
{
double g;
if (cosmopar.omegaX == 0.)
{
g = module_cosmodistances_cosmo_root(z,cosmopar);
// Reformulation of the Mattig relation of OL = OK = 0 (De Sitter)
return(2.*((1. - cosmopar.omegaM - g)*(1. - g)) / cosmopar.omegaM / cosmopar.omegaM / (1. + z) / (1. + z));
}
else
{
if (cosmopar.curvature != 0.)
return(module_cosmodistances_sk(module_cosmodistances_chi1(z,cosmopar)*sqrt(fabs(cosmopar.curvature)), cosmopar.curvature)
/ (1 + z) / sqrt(fabs(cosmopar.curvature)));
else
return(module_cosmodistances_chi1(z,cosmopar) / (1 + z));
}
}
/** @brief Return the angular distance DA(object(z1),object(z2)) divided by c/H0
* Return the angular distance DA(object(z1),object(z2)) divided by c/H0
* objectObject(z1,z2) * c/H0 = DA(z1,z2) = 1/(1+z2) * Sk( integral( z1,z2,c*dz/H(z) ) )
*
* @param z1 redshift of object 1
* @param z2 redshift of object 2
* @param cosmopar cosmological parameter
*/
double module_cosmodistances_objectObject(double z1, double z2, cosmo_param cosmopar)
{
double g1, g2;
if ( z1 >= z2 )
return 0.;
if (cosmopar.omegaX == 0.)
{
g1 = module_cosmodistances_cosmo_root(z1,cosmopar);
g2 = module_cosmodistances_cosmo_root(z2,cosmopar);
// Mattig relation for a De Sitter Universe
return(2.*((1. - cosmopar.omegaM - g1*g2)*(g1 - g2))
/ cosmopar.omegaM / cosmopar.omegaM / (1. + z1) / (1. + z2) / (1. + z2));
}
else
{
if ( cosmopar.curvature != 0. )
return(module_cosmodistances_sk(module_cosmodistances_chi2(z1, z2,cosmopar)*sqrt(fabs(cosmopar.curvature)), cosmopar.curvature)
/ (1 + z2) / sqrt(fabs(cosmopar.curvature)));
else
return(module_cosmodistances_chi2(z1, z2,cosmopar) / (1 + z2));
}
}
/****************************************************************/
/** @brief Return the lens efficacity E=DA(LS) / DA(OS)
* If zl > zs, return 0.
*
* @param zl redshift lens
* @param zs redshift source
* @param cosmopar cosmological parameter
*/
double module_cosmodistances_lensSourceToObserverSource(double zl, double zs, cosmo_param cosmopar)
{
if ( zl >= zs ){
printf("*******************\nWarning, a source is between the lens and the observer\n*******************\n");
printf("Zl: %f , ZS: %f \n", zl, zs);
return (0.);
}
return (module_cosmodistances_objectObject(zl, zs, cosmopar) / module_cosmodistances_observerObject(zs, cosmopar));
}
/** @brief Calculate square root
*
* @param z redshift
* @param C cosmological parameter
*/
// Calculate square root
static double module_cosmodistances_cosmo_root(double z,cosmo_param C)
{
return(sqrt(1. + C.omegaM*z));
}
// Calculate S_k for cosmology
/** @brief Calculate S_k for cosmology
*
* @param x
* @param k curvature
*/
static double module_cosmodistances_sk(double x, double k)
{
if (k > 0)
return(sin(x));
else if (k < 0)
return(sinh(x));
else
return(x);
}
/** @brief Return 1 / H(z) multiplied by H0
* chiz(z) / H0 = 1 / H(z) = 1/H0/(1+z)/sqrt( sum(i, Omega_i*(1+z)^(3*(w_i + 1) ) )
*
* @param z redshift
* @param C cosmological parameter
*/
static double module_cosmodistances_chiz(double z,cosmo_param C)
{
double x;
double yy, yyy, y4;
double r0, e1, e2, frac;
x = 1 + z;
switch (C.model) //TV CPL Model
{
case(1):
x = -x * x * C.curvature + x * x * x * C.omegaM + C.omegaX * pow(x, 3 * (1 + C.wX + C.wa)) * exp(-3 * C.wa * z / x);
break;
case(2): //TV Cardassian (wx is q, wa is n)
yy = pow ( (1.+C.curvature)/C.omegaM ,C.wX);
yyy = (yy - 1.) * pow( x,3.*C.wX*(C.wa-1.) );
y4 = pow(1.+yyy,1./C.wX);
x = -x * x * C.curvature + x * x * x * C.omegaM*y4;
break;
case(3): //TV Interacting DE Model (wa is delta)
yy = C.omegaX*pow( x,3.*(1.+C.wX) );
yyy = ( C.omegaM/(C.wa+3.*C.wX) ) * ( C.wa*pow(x,3.*(1.+C.wX)) + 3.*C.wX*pow(x,(3.-C.wa)) );
x = -x * x * C.curvature + yy +yyy;
break;
case(4): //TV Holographic Ricci Scale with CPL
r0 = C.omegaM/(1.-C.omegaM);
e1 = (3./2.)*( (1.+r0+C.wX+4*C.wa)/(1.+r0+3.*C.wa) );
e2 = (-1./2.)*( (1.+r0-3.*C.wX)/(1.+r0+3.*C.wa) ) ;
frac = ( 1.+r0+3.*C.wa*(x-1.)/x )/(1.+r0) ;
yy = pow(x,e1);
yyy = pow(frac,e2);
x = (yy*yyy)*(yy*yyy);
break;
default:
printf("ERROR: Unknown cosmological model %d\n", C.model);
exit(-1);
}
if ( x <= 0 )
{
printf("ERROR : H^2(z)<=0 produced (z,omegaM,omegaX,wX,wa) = (%.3lf,%.3lf,%.3lf,%.3lf,%.3lf)\n",
z, C.omegaM, C.omegaX, C.wX, C.wa );
exit(-1);
}
return( 1. / sqrt(x) );
}
/** @brief Return the proper distance Dp(0,z) divided by c/H0
* chi1(z) * c/H0 = Dp(0,z) = integral( 0, z, c*dz / H(z) )
*
* @param z redshift
* @param C cosmological parameter
*/
static double module_cosmodistances_chi1(double z,cosmo_param C)
{
double rez;
rez = module_cosmodistances_integral_chiz_ab(0., z,C);
return rez;
}
/** @brief Return the proper distance Dp(z1,z2) divided by c/H0
* chi2(z) * c/H0 = Dp(z1,z2) = integral( z1, z2, c*dz / H(z) )
*
* @param zl redshift lens
* @param zs redshift source
* @param C cosmological parameter
*/
static double module_cosmodistances_chi2(double z1, double z2,cosmo_param C)
{
double rez;
rez = module_cosmodistances_integral_chiz_ab(z1, z2,C);
return rez;
}
/** @brief compute the integral of H0/H(z) by trapezes method
* compute the integral of H0/H(z) by trapezes method
* @param a,b, cosmologicalparameters cosmopar
*
* @param a
* @param b
* @param C cosmological parameter
*/
static double module_cosmodistances_integral_chiz_ab(double a, double b,cosmo_param C)
{
int i,nit;
double res, epsilon=1.e-5; /// accuracy of the integration
nit=(b-a)/epsilon;
res=epsilon*(module_cosmodistances_chiz(a,C)+module_cosmodistances_chiz(b,C))/2.;
for(i=1;i<nit;i++)
{
res=res+epsilon*module_cosmodistances_chiz(a+i*epsilon,C);
}
return res;
}
/** @brief Debug function to print the calculated output of the functions
* Debug function to print the calculated output of the functions
*/
// Debug function to print the calculated output of the functions
int module_cosmodistances_debug(int runmode[], double strongLensingRatios_lensSourceToSource[], double weakLensingRatios_lensSourceToSource[], double weakLensing_observerSource[], int numberCleanLens, double cleanlensRatios_lensSourceToSource[], double cleanlens_observerSource[], std::string DEBUG)
{
if (strcasecmp(DEBUG.c_str(), "True") == 0) // If we are in debug mode
{
if (runmode[0] == 1 or runmode[1] == 1) // If we have strong lensing
{
printf("DEBUG: Strong lensing cosmo ratios D_LS/D_OS for first 2 sets: %lf, %lf\n\n", strongLensingRatios_lensSourceToSource[0], strongLensingRatios_lensSourceToSource[1]);
};
if (runmode[2] == 1) // We have weak lensing
{
printf("DEBUG: Weak lensing D_LS/D_OS for first 2 arclets: %lf, %lf. Weak lensing D_OS for first 2 arclets: %lf, %lf.\n\n", weakLensingRatios_lensSourceToSource[0], weakLensingRatios_lensSourceToSource[1], weakLensing_observerSource[0], weakLensing_observerSource[1]);
};
if (numberCleanLens > 0) // We have cleanlens mode
{
printf("DEBUG: Cleanlens D_LS/D_OS for first 2 sources: %lf, %lf. Cleanlens D_OS for first 2 sources: %lf, %lf.\n\n", cleanlensRatios_lensSourceToSource[0], cleanlensRatios_lensSourceToSource[1], cleanlens_observerSource[0], cleanlens_observerSource[1]);
};
};
return 0;
}
Event Timeline
Log In to Comment