Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98604596
Exercice6.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jan 14, 19:17
Size
4 KB
Mime Type
text/x-c++
Expires
Thu, Jan 16, 19:17 (1 d, 15 h)
Engine
blob
Format
Raw Data
Handle
23604607
Attached To
rSTICAZZI yearII_reports
Exercice6.cpp
View Options
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <cmath>
#include "ConfigFile.tpp"
using namespace std;
// Resolution d'un systeme d'equations lineaires par elimination de Gauss-Jordan:
template <class T>
vector<T> solve(vector<T> const& diag,
vector<T> const& lower,
vector<T> const& upper,
vector<T> const& rhs)
{
vector<T> solution(diag.size());
vector<T> new_diag(diag);
vector<T> new_rhs(rhs);
for(int i(1); i<diag.size(); ++i)
{
double pivot = lower[i-1]/new_diag[i-1];
new_diag[i] -= pivot * upper[i-1];
new_rhs[i] -= pivot * new_rhs[i-1];
}
solution[diag.size()-1] = new_rhs[diag.size()-1] / new_diag[diag.size()-1];
for(int i(diag.size()-2); i>=0; --i)
solution[i] = (new_rhs[i] - upper[i]*solution[i+1]) / new_diag[i];
return solution;
}
// Classe pour epsilon_r(r)
class Epsilonr {
public:
Epsilonr(bool const& trivial_, double const& b_, double const& c_)
: b(b_), R(c_), trivial(trivial_) {};
inline double operator()(double const& r, bool const& left) {
// Le booleen "left" indique s'il faut prendre la limite a gauche ou a droite en cas de discontinuite
double eps(1e-12*b);
if(trivial or r<=b-eps or (abs(r-b)<=eps and left))
return 1.0;
else
return 8.0 - 6.0*(r-b)/(R-b);
}
private:
double b, R;
bool trivial;
};
// Classe pour rho_lib(r)/epsilon_0
class Rho_lib {
public:
Rho_lib(bool const& trivial_, double const& b_, double const& a0_)
: b(b_), a0(a0_), trivial(trivial_) {};
inline double operator()(double const& r) {
if(trivial or r>b)
return 1.0;
else
return a0*(1.0-pow(r/b,2));
}
private:
double b, a0;
bool trivial;
};
int main(int argc, char* argv[])
{
string inputPath("configuration.in"); // Fichier d'input par defaut
if(argc>1) // Fichier d'input specifie par l'utilisateur ("./Exercice6 config_perso.in")
inputPath = argv[1];
ConfigFile configFile(inputPath); // Les parametres sont lus et stockes dans une "map" de strings.
for(int i(2); i<argc; ++i) // Input complementaires ("./Exercice6 config_perso.in input_scan=[valeur]")
configFile.process(argv[i]);
// Fichier de sortie :
string output = configFile.get<string>("output");
// Domaine :
const double b(configFile.get<double>("b"));
const double R(configFile.get<double>("R"));
// Conditions aux bords :
const double V0(configFile.get<double>("V0"));
// Instanciation des objets :
Epsilonr epsilonr(configFile.get<bool>("trivial"), b, R);
Rho_lib rho_lib(configFile.get<bool>("trivial"), b, configFile.get<double>("a0"));
// Discretisation du domaine :
int N1 = configFile.get<int>("N1");
int N2 = configFile.get<int>("N2");
int ninters = N1 + N2;
int npoints = ninters + 1;
double h1 = b/N1;
double h2 = (R-b)/N2;
vector<double> r(npoints);
for(int i(0); i<N1; ++i)
r[i] = i*h1;
for(int i(0); i<=N2; ++i)
r[N1+i] = b + i*h2;
vector<double> h(ninters);
for(int i(0); i<ninters; ++i)
h[i] = r[i+1] - r[i];
vector<double> diag(npoints,0.); // Diagonale
vector<double> lower(ninters,0.); // Diagonale inferieure
vector<double> upper(ninters,0.); // Diagonale superieure
vector<double> rhs(npoints,0.); // Membre de droite
// TODO: Assemblage des elements de la matrice et du membre de droite
// TODO: Condition au bord:
// Resolution:
vector<double> phi(solve(diag,lower,upper,rhs));
// Export des resultats:
// 1. phi
ofstream ofs((output+"_phi.out").c_str());
ofs.precision(15);
for(int i(0); i<npoints; ++i)
ofs << r[i] << " " << phi[i] << endl;
ofs.close();
// 2. E_r et D_r
vector<double> rmid(ninters);
vector<double> Er(ninters);
vector<double> Dr(ninters);
for(int i(0); i<ninters; ++i)
{
rmid[i] = 0.5*r[i] + 0.5*r[i+1];
// TODO: Calculer E_r et D_r/epsilon_0 au milieu des intervalles
Er[i] = 0.;
Dr[i] = 0.;
}
ofs.open((output+"_Er_Dr.out").c_str());
ofs.precision(15);
for(int i(0); i<ninters; ++i)
ofs << rmid[i] << " " << Er[i] << " " << Dr[i] << endl;
ofs.close();
// 3. rho_lib, div(E_r) et div(D_r)
vector<double> rmidmid(ninters-1);
vector<double> div_Er(ninters-1);
vector<double> div_Dr(ninters-1);
for(int i(0); i<ninters-1; ++i)
{
rmidmid[i] = 0.5*rmid[i] + 0.5*rmid[i+1];
// TODO: Calculer div(E_r) et div(D_r)/epsilon_0 au milieu des milieu des intervalles
div_Er[i] = 0.;
div_Dr[i] = 0.;
}
ofs.open((output+"_rholib_divEr_divDr.out").c_str());
ofs.precision(15);
for(int i(0); i<ninters-1; ++i)
ofs << rmidmid[i] << " " << rho_lib(rmidmid[i]) << " " << div_Er[i] << " " << div_Dr[i] << endl;
ofs.close();
return 0;
}
Event Timeline
Log In to Comment