<span id="index-0"></span><h1>compute cna/atom command<a class="headerlink" href="#compute-cna-atom-command" title="Permalink to this headline">¶</a></h1>
<div class="section" id="syntax">
<h2>Syntax<a class="headerlink" href="#syntax" title="Permalink to this headline">¶</a></h2>
<div class="highlight-python"><div class="highlight"><pre>compute ID group-ID cna/atom cutoff
</pre></div>
</div>
<ul class="simple">
<li>ID, group-ID are documented in <a class="reference internal" href="compute.html"><em>compute</em></a> command</li>
<li>cna/atom = style name of this compute command</li>
<li>cutoff = cutoff distance for nearest neighbors (distance units)</li>
</ul>
</div>
<div class="section" id="examples">
<h2>Examples<a class="headerlink" href="#examples" title="Permalink to this headline">¶</a></h2>
<div class="highlight-python"><div class="highlight"><pre>compute 1 all cna/atom 3.08
</pre></div>
</div>
</div>
<div class="section" id="description">
<h2>Description<a class="headerlink" href="#description" title="Permalink to this headline">¶</a></h2>
<p>Define a computation that calculates the CNA (Common Neighbor
Analysis) pattern for each atom in the group. In solid-state systems
the CNA pattern is a useful measure of the local crystal structure
around an atom. The CNA methodology is described in <a class="reference internal" href="#faken"><span>(Faken)</span></a>
and <a class="reference internal" href="#tsuzuki"><span>(Tsuzuki)</span></a>.</p>
<p>Currently, there are five kinds of CNA patterns LAMMPS recognizes:</p>
<ul class="simple">
<li>fcc = 1</li>
<li>hcp = 2</li>
<li>bcc = 3</li>
<li>icosohedral = 4</li>
<li>unknown = 5</li>
</ul>
<p>The value of the CNA pattern will be 0 for atoms not in the specified
compute group. Note that normally a CNA calculation should only be
performed on mono-component systems.</p>
<p>The CNA calculation can be sensitive to the specified cutoff value.
You should insure the appropriate nearest neighbors of an atom are
found within the cutoff distance for the presumed crystal strucure.
E.g. 12 nearest neighbor for perfect FCC and HCP crystals, 14 nearest
neighbors for perfect BCC crystals. These formulas can be used to
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.