Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98988241
test_mpi.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 18, 06:50
Size
7 KB
Mime Type
text/x-c++
Expires
Mon, Jan 20, 06:50 (1 d, 20 h)
Engine
blob
Format
Raw Data
Handle
23680798
Attached To
rTAMAAS tamaas
test_mpi.cpp
View Options
/**
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2016 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Tamaas is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Tamaas is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Tamaas. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "fft_plan_manager.hh"
#include "grid.hh"
#include "grid_hermitian.hh"
#include "loop.hh"
#include "static_types.hh"
#include "tamaas.hh"
#include "test.hh"
#include <algorithm>
#include <fftw3-mpi.h>
/* -------------------------------------------------------------------------- */
using
namespace
tamaas
;
namespace
tamaas
{
extern
int
mpi_rank
;
}
#define TEST_INFO __PRETTY_FUNCTION__ << " nb_components = " << nb_components
#define TEST_SUCCESS \
MPI_Barrier(MPI_COMM_WORLD); \
std::cout << "success: " << TEST_INFO << std::endl;
#define TEST_START std::cout << "start: " << TEST_INFO << std::endl;
template
<
typename
T
,
UInt
dim
>
void
TEST1
(
UInt
nb_components
,
std
::
initializer_list
<
UInt
>
dims
)
{
TEST_START
;
Grid
<
T
,
dim
>
grid
(
dims
,
nb_components
);
Grid
<
T
,
dim
>
solution
(
dims
,
nb_components
);
std
::
iota
(
grid
.
begin
(),
grid
.
end
(),
1
);
// Makeing solution
auto
add_one
=
[]
CUDA_LAMBDA
(
T
&
x
)
{
return
x
+
1
;
};
std
::
transform
(
grid
.
begin
(),
grid
.
end
(),
solution
.
begin
(),
add_one
);
// apply tamaas loop
auto
add_one_inplace
=
[]
CUDA_LAMBDA
(
T
&
x
)
{
x
+=
1
;
};
Loop
::
loop
(
add_one_inplace
,
grid
);
assert
(
compare
(
grid
,
solution
,
AreFloatEqual
()));
grid
.
gather
();
solution
.
gather
();
assert
(
compare
(
grid
,
solution
,
AreFloatEqual
()));
TEST_SUCCESS
;
}
template
<
typename
T
>
void
TEST2
(
UInt
nb_components
)
{
TEST_START
;
Grid
<
T
,
2
>
grid
({
10
,
10
},
nb_components
);
std
::
iota
(
grid
.
begin
(),
grid
.
end
(),
1
);
Grid
<
T
,
2
>
solution
({
10
,
10
},
nb_components
);
solution
=
grid
;
if
(
nb_components
>
1
)
{
std
::
for_each
(
solution
.
begin
(),
solution
.
end
(),
[
&
]
CUDA_LAMBDA
(
T
&
x
)
{
if
(
int
(
x
)
%
nb_components
==
1
)
x
+=
1
;
});
}
else
{
std
::
for_each
(
solution
.
begin
(),
solution
.
end
(),
[
&
]
CUDA_LAMBDA
(
T
&
x
)
{
x
+=
1
;
});
}
Loop
::
stridedLoop
([]
CUDA_LAMBDA
(
T
&
x
)
{
x
+=
1
;
},
grid
);
assert
(
compare
(
solution
,
grid
));
grid
.
gather
();
solution
.
gather
();
assert
(
compare
(
solution
,
grid
));
TEST_SUCCESS
;
}
template
<
typename
T
>
void
TEST3
(
UInt
nb_components
)
{
TEST_START
;
Grid
<
T
,
2
>
grid
({
2
,
2
},
nb_components
);
std
::
iota
(
grid
.
begin
(),
grid
.
end
(),
1
);
const
auto
id
=
[]
CUDA_LAMBDA
(
T
&
x
)
{
return
x
;
};
// Sum reduction
T
red
=
Loop
::
reduce
<
operation
::
plus
>
(
id
,
grid
);
// gather the grid to test in sequential
grid
.
gather
();
if
(
mpi_rank
==
0
)
{
T
sol
=
std
::
accumulate
(
grid
.
begin
(),
grid
.
end
(),
0
,
std
::
plus
<
T
>
());
assert
(
sol
==
red
);
}
// re-distribute the grid to test in sequential
grid
.
distribute
();
// Product reduction
red
=
Loop
::
reduce
<
operation
::
times
>
(
id
,
grid
);
// gather the grid to test in sequential
grid
.
gather
();
if
(
mpi_rank
==
0
)
{
T
sol
=
std
::
accumulate
(
grid
.
begin
(),
grid
.
end
(),
T
(
1.
),
std
::
multiplies
<
T
>
());
assert
(
sol
==
red
);
}
// re-distribute the grid to test in sequential
grid
.
distribute
();
red
=
Loop
::
reduce
<
operation
::
min
>
(
id
,
grid
);
grid
.
gather
();
if
(
mpi_rank
==
0
)
{
// Min reduction
T
sol
=
*
std
::
min_element
(
grid
.
begin
(),
grid
.
end
());
assert
(
sol
==
red
);
}
// re-distribute the grid to test in sequential
grid
.
distribute
();
red
=
Loop
::
reduce
<
operation
::
max
>
(
id
,
grid
);
if
(
mpi_rank
==
0
)
{
// Max reduction
T
sol
=
*
std
::
max_element
(
grid
.
begin
(),
grid
.
end
());
assert
(
sol
==
red
);
}
TEST_SUCCESS
;
}
void
TEST4
()
{
constexpr
UInt
size
=
2
;
/* get local data size and allocate */
ptrdiff_t
local_n0
,
local_0_start
;
ptrdiff_t
alloc_local
=
fftw_mpi_local_size_2d
(
size
,
size
/
2
+
1
,
MPI_COMM_WORLD
,
&
local_n0
,
&
local_0_start
);
TAMAAS_LOG
(
alloc_local
);
std
::
vector
<
double
>
data
(
local_n0
*
size
);
std
::
vector
<
fftw_complex
>
solution
(
local_n0
*
(
size
/
2
+
1
));
std
::
for_each
(
data
.
begin
(),
data
.
end
(),
[](
double
&
x
)
{
x
=
0.
;
});
for
(
auto
&&
x:
solution
){
x
[
0
]
=
0.
;
x
[
1
]
=
0.
;
};
std
::
iota
(
std
::
begin
(
data
),
std
::
end
(
data
),
0
);
fftw_plan
solution_plan
;
if
(
mpi_size
>
1
||
true
)
{
solution_plan
=
fftw_mpi_plan_dft_r2c_2d
(
size
,
size
,
&
data
[
0
],
&
solution
[
0
],
MPI_COMM_WORLD
,
FFTW_ESTIMATE
);
}
else
{
solution_plan
=
fftw_plan_dft_r2c_2d
(
size
,
size
,
&
data
[
0
],
&
solution
[
0
],
FFTW_ESTIMATE
);
}
fftw_execute
(
solution_plan
);
Grid
<
Real
,
2
>
grid
({
size
,
size
},
1
);
std
::
iota
(
grid
.
begin
(),
grid
.
end
(),
0
);
TAMAAS_LOG
(
grid
);
std
::
for_each
(
data
.
begin
(),
data
.
end
(),
[](
double
&
x
)
{
TAMAAS_LOG
(
x
);
});
GridHermitian
<
Real
,
2
>
result
({
size
,
size
/
2
+
1
},
1
);
FFTPlanManager
::
get
().
createPlan
(
grid
,
result
).
forwardTransform
();
#ifdef USE_CUDA
cudaDeviceSynchronize
();
#endif
TAMAAS_LOG
(
result
);
std
::
for_each
(
solution
.
begin
(),
solution
.
end
(),
[](
fftw_complex
&
x
)
{
TAMAAS_LOG
(
x
[
0
]
<<
" , "
<<
x
[
1
]);
});
assert
(
compare
(
result
,
solution
,
AreComplexEqual
()));
fftw_destroy_plan
(
solution_plan
);
FFTPlanManager
::
get
().
destroyPlan
(
grid
,
result
);
}
void
TEST5
()
{
constexpr
UInt
size
=
10
;
double
data
[
size
*
size
]
=
{
0
};
fftw_complex
solution
[
size
*
(
size
/
2
+
1
)]
=
{{
0
}};
std
::
iota
(
std
::
begin
(
data
),
std
::
end
(
data
),
0
);
fftw_plan
solution_plan
=
fftw_plan_dft_r2c_2d
(
size
,
size
,
data
,
solution
,
FFTW_ESTIMATE
);
fftw_execute
(
solution_plan
);
Grid
<
Real
,
2
>
grid
({
size
,
size
},
1
);
std
::
iota
(
grid
.
begin
(),
grid
.
end
(),
0
);
GridHermitian
<
Real
,
2
>
result
({
size
,
size
/
2
+
1
},
1
);
FFTPlanManager
::
get
().
createPlan
(
grid
,
result
).
forwardTransform
();
#ifdef USE_CUDA
cudaDeviceSynchronize
();
#endif
assert
(
compare
(
result
,
solution
,
AreComplexEqual
()));
fftw_destroy_plan
(
solution_plan
);
FFTPlanManager
::
get
().
destroyPlan
(
grid
,
result
);
}
////////////////////////////////
template
<
typename
T
>
void
runGridTests
()
{
for
(
UInt
nb_components
=
1
;
nb_components
<
10
;
++
nb_components
)
{
TEST1
<
T
,
2
>
(
nb_components
,
{
10
,
20
});
TEST1
<
T
,
3
>
(
nb_components
,
{
10
,
20
,
30
});
TEST2
<
T
>
(
nb_components
);
TEST3
<
T
>
(
nb_components
);
}
}
void
runFFTWTests
()
{
TEST4
();
// TEST5();
}
int
main
()
{
initialize
();
runFFTWTests
();
runGridTests
<
Real
>
();
runGridTests
<
UInt
>
();
runGridTests
<
int
>
();
finalize
();
}
Event Timeline
Log In to Comment