Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99001970
mesure.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 18, 09:19
Size
5 KB
Mime Type
text/x-python
Expires
Mon, Jan 20, 09:19 (1 d, 21 h)
Engine
blob
Format
Raw Data
Handle
23687571
Attached To
rSTICAZZI yearII_reports
mesure.py
View Options
import
math
class
Mesure
:
def
__init__
(
self
,
v
,
e
):
self
.
v
=
float
(
v
)
self
.
e
=
math
.
fabs
(
float
(
e
))
def
__str__
(
self
):
return
str
(
self
.
v
)
+
" +- "
+
str
(
self
.
e
)
def
__iadd__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
self
.
v
+=
m
.
v
self
.
e
+=
m
.
e
else
:
self
.
v
+=
m
return
self
def
__isub__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
self
.
v
-=
m
.
v
self
.
e
+=
m
.
e
else
:
self
.
v
-=
m
return
self
def
__imul__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
self
.
e
=
self
.
v
*
m
.
e
+
self
.
e
*
m
.
v
self
.
v
*=
m
.
v
else
:
self
.
v
*=
m
self
.
e
*=
m
return
self
def
__itruediv__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
self
.
e
=
self
.
e
/
m
.
v
+
self
.
v
*
m
.
e
/
m
.
v
**
2
self
.
v
/=
m
.
v
else
:
self
.
v
/=
m
self
.
e
/=
m
return
self
def
__radd__
(
self
,
k
):
return
Mesure
(
self
.
v
+
k
,
self
.
e
)
def
__rsub__
(
self
,
k
):
return
Mesure
(
self
.
v
-
k
,
self
.
e
)
def
__rmul__
(
self
,
k
):
return
Mesure
(
self
.
v
*
k
,
self
.
e
*
k
)
def
__rtruediv__
(
self
,
k
):
return
Mesure
(
self
.
v
/
k
,
self
.
e
/
k
)
def
__add__
(
self
,
m
):
if
not
isinstance
(
m
,
Mesure
):
return
self
.
__radd__
(
m
)
return
Mesure
(
self
.
v
+
m
.
v
,
self
.
e
+
m
.
e
)
def
__sub__
(
self
,
m
):
if
not
isinstance
(
m
,
Mesure
):
return
self
.
__rsub__
(
m
)
return
Mesure
(
self
.
v
-
m
.
v
,
self
.
e
+
m
.
e
)
def
__mul__
(
self
,
m
):
if
not
isinstance
(
m
,
Mesure
):
return
self
.
__rmul__
(
m
)
return
Mesure
(
self
.
v
*
m
.
v
,
self
.
v
*
m
.
e
+
self
.
e
*
m
.
v
)
def
__truediv__
(
self
,
m
):
if
not
isinstance
(
m
,
Mesure
):
return
self
.
__rtruediv__
(
m
)
return
Mesure
(
self
.
v
/
m
.
v
,
self
.
e
/
m
.
v
+
self
.
v
*
m
.
e
/
m
.
v
**
2
)
def
__pow__
(
self
,
r
):
if
not
isinstance
(
r
,
int
)
and
not
isinstance
(
r
,
float
):
raise
TypeError
(
"Mesure: pow is only for int or float args"
)
err
=
r
*
self
.
v
**
(
r
-
1
)
*
self
.
e
return
Mesure
(
self
.
v
**
r
,
math
.
fabs
(
err
))
def
__eq__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
return
m
.
v
==
self
.
v
and
m
.
e
==
self
.
e
return
self
.
v
==
m
def
__ne__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
return
m
.
v
!=
self
.
v
or
m
.
e
!=
self
.
e
return
self
.
v
!=
m
def
__lt__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
return
self
.
v
<
m
.
v
return
self
.
v
<
m
def
__le__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
return
self
.
v
<=
m
.
v
return
self
.
v
<=
m
def
__gt__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
return
self
.
v
>
m
.
v
return
self
.
v
>
m
def
__ge__
(
self
,
m
):
if
isinstance
(
m
,
Mesure
):
return
self
.
v
>=
m
.
v
return
self
.
v
>=
m
def
square
(
self
):
return
Mesure
(
self
.
v
**
2
,
2
*
self
.
v
*
self
.
e
)
def
sqrt
(
self
):
return
Mesure
(
math
.
sqrt
(
self
.
v
),
self
.
e
/
(
2
*
math
.
sqrt
(
self
.
v
)))
def
exp
(
self
):
e
=
math
.
exp
(
self
.
v
)
return
Mesure
(
e
,
e
*
self
.
e
)
def
log
(
self
):
return
Mesure
(
math
.
log
(
self
.
v
),
self
.
e
/
self
.
v
)
def
sin
(
self
):
return
Mesure
(
math
.
sin
(
self
.
v
),
math
.
cos
(
self
.
v
)
*
self
.
e
)
def
cos
(
self
):
return
Mesure
(
math
.
cos
(
self
.
v
),
math
.
sin
(
self
.
v
)
*
self
.
e
)
def
genMesures
(
values
,
error
):
out
=
[]
for
value
in
values
:
out
.
append
(
Mesure
(
value
,
error
))
return
out
def
minMaxMesure
(
m
,
M
):
return
Mesure
((
float
(
M
)
+
float
(
m
))
/
2
,
(
float
(
M
)
-
float
(
m
))
/
2
)
def
middle
(
X
):
x
=
0
for
i
in
X
:
x
+=
i
return
x
/
len
(
X
)
def
covariance
(
X
,
Y
):
N
=
len
(
X
)
x
=
middle
(
Y
)
y
=
middle
(
Y
)
c
=
0
for
i
in
range
(
N
):
c
+=
(
X
[
i
]
-
x
)
*
(
Y
[
i
]
-
y
)
return
c
/
N
def
variance
(
X
):
return
covariance
(
X
,
X
)
def
leastSquareMethod
(
X
,
Y
):
m
=
covariance
(
X
,
Y
)
/
variance
(
X
)
x
=
middle
(
X
)
y
=
middle
(
Y
)
b
=
y
-
m
*
x
if
isinstance
(
m
,
Mesure
):
m
=
m
.
v
if
isinstance
(
b
,
Mesure
):
b
=
b
.
v
return
(
m
,
b
)
def
splitline
(
line
):
out
=
(
line
[:
-
1
])
.
split
(
" "
)
flag
=
False
while
(
not
flag
):
i
=
0
flag
=
False
while
(
i
<
len
(
out
)):
if
(
out
[
i
]
==
''
):
del
out
[
i
]
flag
=
True
else
:
i
+=
1
return
out
def
loadMesures
(
filename
,
values
,
errors
):
f
=
open
(
filename
,
'r'
)
firstline
=
None
if
isinstance
(
values
,
str
):
firstline
=
splitline
(
f
.
readline
())
values
=
firstline
.
index
(
values
)
if
isinstance
(
errors
,
str
):
if
firstline
is
None
:
firstline
=
splitline
(
f
.
readline
())
errors
=
firstline
.
index
(
errors
)
out
=
[]
print
(
"File
%s
: loading columns (
%d
,
%d
)"
%
(
filename
,
values
,
errors
))
for
line
in
f
:
l
=
splitline
(
line
)
try
:
out
.
append
(
Mesure
(
l
[
values
],
l
[
errors
]))
except
ValueError
:
print
(
"Could not parse line"
,
line
,
"Ignoring it"
)
f
.
close
()
return
out
def
computeRange
(
y
,
Y
,
x
,
X
):
dy
=
Y
-
y
dx
=
(
X
-
x
)
.
v
rm
=
(
dy
.
v
-
dy
.
e
)
/
dx
rp
=
(
dy
.
v
+
dy
.
e
)
/
dx
return
(
(
rm
,
Y
.
v
-
Y
.
e
-
rm
*
x
.
v
),
(
rp
,
Y
.
v
+
Y
.
e
-
rp
*
x
.
v
)
)
Event Timeline
Log In to Comment