Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97719159
gradient2.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Jan 6, 06:08
Size
8 KB
Mime Type
text/x-c
Expires
Wed, Jan 8, 06:08 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23445149
Attached To
R1448 Lenstool-HPC
gradient2.cpp
View Options
/**
Lenstool-HPC: HPC based massmodeling software and Lens-map generation
Copyright (C) 2017 Christoph Schaefer, EPFL (christophernstrerne.schaefer@epfl.ch), Gilles Fourestey (gilles.fourestey@epfl.ch)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
@brief: Function for second order computation on CPU to compare with GPUs
*/
#include <iostream>
#include <iomanip>
#include <string.h>
//#include <cuda_runtime.h>
#include <math.h>
#include <sys/time.h>
#include <fstream>
#include <map>
/*
#ifdef __AVX__
#include "simd_math_avx.h"
#endif
#ifdef __AVX512F__
#include "simd_math_avx512f.h"
#endif
*/
#include "structure_hpc.hpp"
#include "gradient2.hpp"
//lenstool fct
/*
* derivates of I0.5 KK
* Parameters :
* - (x,y) is the computation position of the potential
* - eps is the ellepticity (a-b)/(a+b)
* - rc is the core radius
* - b0 asymptotic Einstein radius E0. (6pi*vdisp^2/c^2)
*
* Return a the 4 second derivatives of the PIEMD potential
*/
inline
void
mdci05_hpc
(
type_t
x
,
type_t
y
,
type_t
eps
,
type_t
rc
,
type_t
b0
,
struct
matrix
*
res
)
{
type_t
ci
,
sqe
,
cx1
,
cxro
,
cyro
,
wrem
;
type_t
didyre
,
didyim
,
didxre
;
// didxim;
type_t
cx1inv
,
den1
,
num2
,
den2
;
//
sqe
=
sqrt
(
eps
);
cx1
=
(
1.
-
eps
)
/
(
1.
+
eps
);
cx1inv
=
1.
/
cx1
;
//
cxro
=
(
1.
+
eps
)
*
(
1.
+
eps
);
/* rem^2=x^2/(1+e^2) + y^2/(1-e^2) Eq 2.3.6*/
cyro
=
(
1.
-
eps
)
*
(
1.
-
eps
);
ci
=
0.5
*
(
1.
-
eps
*
eps
)
/
sqe
;
wrem
=
sqrt
(
rc
*
rc
+
x
*
x
/
cxro
+
y
*
y
/
cyro
);
/*wrem^2=w^2+rem^2 with w core radius*/
den1
=
2.
*
sqe
*
wrem
-
y
*
cx1inv
;
den1
=
cx1
*
cx1
*
x
*
x
+
den1
*
den1
;
num2
=
2.
*
rc
*
sqe
-
y
;
den2
=
x
*
x
+
num2
*
num2
;
//
didxre
=
ci
*
(
cx1
*
(
2.
*
sqe
*
x
*
x
/
cxro
/
wrem
-
2.
*
sqe
*
wrem
+
y
*
cx1inv
)
/
den1
+
num2
/
den2
);
didyre
=
ci
*
(
(
2.
*
sqe
*
x
*
y
*
cx1
/
cyro
/
wrem
-
x
)
/
den1
+
x
/
den2
);
didyim
=
ci
*
(
(
2.
*
sqe
*
wrem
*
cx1inv
-
y
*
cx1inv
*
cx1inv
-
4.
*
eps
*
y
/
cyro
+
2.
*
sqe
*
y
*
y
/
cyro
/
wrem
*
cx1inv
)
/
den1
-
num2
/
den2
);
//
res
->
a
=
b0
*
didxre
;
res
->
b
=
res
->
d
=
b0
*
didyre
;
//(didyre+didxim)/2.;
res
->
c
=
b0
*
didyim
;
// return(res);
}
//
void
printmat
(
matrix
A
){
std
::
cerr
<<
A
.
a
<<
" "
<<
A
.
b
<<
" "
<<
A
.
c
<<
" "
<<
A
.
d
<<
std
::
endl
;
}
//
// SOA versions, vectorizable
//
//
struct
matrix
module_potentialDerivatives_totalGradient2_81_SOA_v2
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
)
{
asm
volatile
(
"# module_potentialDerivatives_totalGradient2_81_SOA begins"
);
//std::cout << "# module_potentialDerivatives_totalGradient_81_SOA begins" << std::endl;
// 6 DP loads, i.e. 48 Bytes: position_x, position_y, ellipticity_angle, ellipticity_potential, rcore, b0
//
type_t
t05
;
type_t
RR
;
//
struct
matrix
grad2
,
clump
,
clumpcore
,
clumpcut
;
struct
point
true_coord
,
true_coord_rotation
;
//
grad2
.
a
=
clump
.
a
=
0
;
grad2
.
b
=
clump
.
b
=
0
;
grad2
.
c
=
clump
.
c
=
0
;
grad2
.
d
=
clump
.
d
=
0
;
//
for
(
int
i
=
shalos
;
i
<
shalos
+
nhalos
;
i
++
)
{
//if (lens->ellipticity_potential[i] < 0.0001) printf("halo = %d, ellipticity_potential = %f\n", i, lens->ellipticity_potential[i]);
//if(lens->ellipticity_potential[i] > 0.0001)
if
(
true
)
{
//True coord
true_coord
.
x
=
pImage
->
x
-
lens
->
position_x
[
i
];
true_coord
.
y
=
pImage
->
y
-
lens
->
position_y
[
i
];
//
//std::cerr << "start" << std::endl;
//Rotation
type_t
cose
=
lens
->
anglecos
[
i
];
type_t
sine
=
lens
->
anglesin
[
i
];
//
type_t
x
=
true_coord
.
x
*
cose
+
true_coord
.
y
*
sine
;
type_t
y
=
true_coord
.
y
*
cose
-
true_coord
.
x
*
sine
;
// 81 comput
t05
=
lens
->
rcut
[
i
]
/
(
lens
->
rcut
[
i
]
-
lens
->
rcore
[
i
]);
mdci05_hpc
(
x
,
y
,
lens
->
ellipticity_potential
[
i
],
lens
->
rcore
[
i
],
lens
->
b0
[
i
],
&
clumpcore
);
mdci05_hpc
(
x
,
y
,
lens
->
ellipticity_potential
[
i
],
lens
->
rcut
[
i
],
lens
->
b0
[
i
],
&
clumpcut
);
//printf("X %f Y %f Ga: %f %f\n",true_coord.x ,true_coord.y , clumpcore.a, clumpcut.a);
//printf("X %f Y %f Gb: %f %f\n",true_coord.x ,true_coord.y, clumpcore.b, clumpcut.b);
//printf("X %f Y %f Gc: %f %f\n", true_coord.x ,true_coord.y,clumpcore.c, clumpcut.c);
//printf("X %f Y %f Gd: %f %f\n",true_coord.x ,true_coord.y, clumpcore.d, clumpcut.d);
//
clumpcore
.
a
=
t05
*
(
clumpcore
.
a
-
clumpcut
.
a
);
clumpcore
.
b
=
t05
*
(
clumpcore
.
b
-
clumpcut
.
b
);
clumpcore
.
c
=
t05
*
(
clumpcore
.
c
-
clumpcut
.
c
);
clumpcore
.
d
=
t05
*
(
clumpcore
.
d
-
clumpcut
.
d
);
//printmat(clumpcore);
//printf("X %f Y %f Ga: %f %f\n",pImage->x ,pImage->y , clumpcore.a, t05);
//printf("X %f Y %f Gb: %f %f\n",pImage->x ,pImage->y, clumpcore.b, clumpcut.b);
//printf("X %f Y %f Gc: %f %f\n",pImage->x ,pImage->y, clumpcore.c, clumpcut.c);
//printf("X %f Y %f Gd: %f %f\n",pImage->x ,pImage->y, clumpcore.d, clumpcut.d);
//rotation matrix 1
clumpcut
.
a
=
clumpcore
.
a
*
cose
+
clumpcore
.
b
*
-
sine
;
clumpcut
.
b
=
clumpcore
.
a
*
sine
+
clumpcore
.
b
*
cose
;
clumpcut
.
c
=
clumpcore
.
d
*
sine
+
clumpcore
.
c
*
cose
;
clumpcut
.
d
=
clumpcore
.
d
*
cose
+
clumpcore
.
c
*
-
sine
;
//printf("X %f Y %f theta: %f %f %f\n",pImage->x ,pImage->y,lens->ellipticity_angle[i], cose, sine);
//printmat(clumpcut);
//rotation matrix 2
clump
.
a
=
cose
*
clumpcut
.
a
-
sine
*
clumpcut
.
d
;
clump
.
b
=
cose
*
clumpcut
.
b
-
sine
*
clumpcut
.
c
;
clump
.
c
=
sine
*
clumpcut
.
b
+
cose
*
clumpcut
.
c
;
clump
.
d
=
sine
*
clumpcut
.
a
+
cose
*
clumpcut
.
d
;
//
//printf("X %f Y %f Ga: %f \n",pImage->x ,pImage->y , clump.a );
//printf("X %f Y %f Gb: %f \n",pImage->x ,pImage->y, clump.b );
//printf("X %f Y %f Gc: %f \n",pImage->x ,pImage->y, clump.c);
//printf("X %f Y %f Gd: %f \n",pImage->x ,pImage->y, clump.d );
//printmat(clump);
//
grad2
.
a
+=
clump
.
a
;
grad2
.
b
+=
clump
.
b
;
grad2
.
c
+=
clump
.
c
;
grad2
.
d
+=
clump
.
d
;
}
else
if
((
RR
=
true_coord
.
x
*
true_coord
.
x
+
true_coord
.
y
*
true_coord
.
y
)
>
0.
)
{
// Circular dPIE Elliasdottir 2007 Eq A23 slighly modified for t05
type_t
X
,
Y
,
z
,
p
,
t05
;
X
=
lens
->
rcore
[
i
];
Y
=
lens
->
rcut
[
i
];
t05
=
lens
->
b0
[
i
]
*
Y
/
(
Y
-
X
);
// 1/u because t05/sqrt(u) and normalised Q/sqrt(u)
z
=
sqrt
(
RR
+
X
*
X
)
-
X
-
sqrt
(
RR
+
Y
*
Y
)
+
Y
;
// R*dphi/dR
X
=
RR
/
X
;
Y
=
RR
/
Y
;
p
=
(
1.
-
1.
/
sqrt
(
1.
+
X
/
lens
->
rcore
[
i
]))
/
X
-
(
1.
-
1.
/
sqrt
(
1.
+
Y
/
lens
->
rcut
[
i
]))
/
Y
;
// d2phi/dR2
X
=
true_coord
.
x
*
true_coord
.
x
/
RR
;
Y
=
true_coord
.
y
*
true_coord
.
y
/
RR
;
clump
.
a
=
t05
*
(
p
*
X
+
z
*
Y
/
RR
);
clump
.
c
=
t05
*
(
p
*
Y
+
z
*
X
/
RR
);
X
=
true_coord
.
x
*
true_coord
.
y
/
RR
;
clump
.
b
=
clump
.
d
=
t05
*
(
p
*
X
-
z
*
X
/
RR
);
grad2
.
a
+=
clump
.
a
;
grad2
.
b
+=
clump
.
b
;
grad2
.
c
+=
clump
.
c
;
grad2
.
d
+=
clump
.
d
;
}
else
{
clump
.
a
=
clump
.
c
=
lens
->
b0
[
i
]
/
lens
->
rcore
[
i
]
/
2.
;
clump
.
b
=
clump
.
d
=
0.
;
grad2
.
a
+=
clump
.
a
;
grad2
.
b
+=
clump
.
b
;
grad2
.
c
+=
clump
.
c
;
grad2
.
d
+=
clump
.
d
;
}
}
//
return
(
grad2
);
}
//
//This natrix handles the calling of the gradient functions for the different type without losing time to switch or if condition
//
typedef
struct
matrix
(
*
halo_g2_func_t
)
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
shalos
,
int
nhalos
);
halo_g2_func_t
halo_g2_func
[
100
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
module_potentialDerivatives_totalGradient2_81_SOA_v2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
//
//
//
struct
matrix
module_potentialDerivatives_totalGradient2_SOA
(
const
struct
point
*
pImage
,
const
struct
Potential_SOA
*
lens
,
int
nhalos
)
{
struct
matrix
grad2
,
clumpgrad
;
//
grad2
.
a
=
clumpgrad
.
a
=
0
;
grad2
.
b
=
clumpgrad
.
b
=
0
;
grad2
.
c
=
clumpgrad
.
c
=
0
;
grad2
.
d
=
clumpgrad
.
d
=
0
;
//
int
shalos
=
0
;
while
(
shalos
<
nhalos
)
{
int
lens_type
=
lens
->
type
[
shalos
];
int
count
=
1
;
while
(
lens
->
type
[
shalos
+
count
]
==
lens_type
and
shalos
+
count
<
nhalos
)
count
++
;
//std::cerr << "type = " << lens_type << " " << count << " " << shalos << " " << nhalos << " " << " func = " << halo_g2_func[lens_type] << std::endl;
//
clumpgrad
=
(
*
halo_g2_func
[
lens_type
])(
pImage
,
lens
,
shalos
,
count
);
//
grad2
.
a
+=
clumpgrad
.
a
;
grad2
.
b
+=
clumpgrad
.
b
;
grad2
.
c
+=
clumpgrad
.
c
;
grad2
.
d
+=
clumpgrad
.
d
;
shalos
+=
count
;
}
return
(
grad2
);
}
//
Event Timeline
Log In to Comment