Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91445038
divergence_1.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 11, 04:46
Size
6 KB
Mime Type
text/x-python
Expires
Wed, Nov 13, 04:46 (2 d)
Engine
blob
Format
Raw Data
Handle
22264144
Attached To
R6289 Motion correction paper
divergence_1.py
View Options
import
matplotlib
from
matplotlib.backends.backend_agg
import
FigureCanvasAgg
as
FigureCanvas
from
matplotlib.figure
import
Figure
from
matplotlib
import
pyplot
as
plt
import
numpy
as
np
from
skimage
import
io
import
os
from
multiprocessing
import
Pool
#paths = ['/scratch/aymanns/Data_R57C10s/1_170426_fly1_013/results/l100g0/']
#outs = ['div_1_170426_fly1_013/div_l100g0/']
#path = '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l1000g0/'
#path = '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l1000g10/'
#path = '/scratch/aymanns/Data_R57C10s/1_170426_fly1_013/results/l1000g0/'
#paths = ['/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l100g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l200g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l300g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l400g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l500g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l600g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l700g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l800g0/',
# '/scratch/aymanns/Data_R57C10s/4_170609_fly1_000/results/l900g0/']
#
#outs = ['div_4_170609_fly1_000/div_l100g0/',
# 'div_4_170609_fly1_000/div_l200g0/',
# 'div_4_170609_fly1_000/div_l300g0/',
# 'div_4_170609_fly1_000/div_l400g0/',
# 'div_4_170609_fly1_000/div_l500g0/',
# 'div_4_170609_fly1_000/div_l600g0/',
# 'div_4_170609_fly1_000/div_l700g0/',
# 'div_4_170609_fly1_000/div_l800g0/',
# 'div_4_170609_fly1_000/div_l900g0/']
#for path,out in zip(paths,outs):
def
func
(
l
):
for
g
in
[
0
,
2
,
4
,
6
,
8
,
10
,
12
,
14
,
16
,
18
,
20
]:
try
:
print
(
'lambda={} gamma={}'
.
format
(
l
,
g
))
path
=
'/scratch/aymanns/Data_R57C10s/1_170426_fly1_013/results/l{}g{}/'
.
format
(
l
,
g
)
out
=
'/scratch/aymanns/Data_R57C10s/1_170426_fly1_013/results/div_l{}g{}/'
.
format
(
l
,
g
)
images
=
io
.
imread
(
path
+
'warped1.tif'
)
n_frames
=
images
.
shape
[
0
]
frobenius_output
=
np
.
zeros
((
n_frames
,
images
.
shape
[
1
],
images
.
shape
[
2
]))
divergence_output
=
np
.
zeros
((
n_frames
,
images
.
shape
[
1
],
images
.
shape
[
2
]))
vectors
=
np
.
zeros
((
n_frames
,
320
,
320
,
3
))
#because of columns come first y corresponds to first dimension
#roi_y_min=307
#roi_y_max=364
#roi_x_min=361
#roi_x_max=422
#Entire image
roi_y_min
=
0
roi_y_max
=
images
.
shape
[
1
]
roi_x_min
=
0
roi_x_max
=
images
.
shape
[
2
]
x
=
np
.
linspace
(
1
,
roi_x_max
-
roi_x_min
,
roi_x_max
-
roi_x_min
)
y
=
np
.
linspace
(
1
,
roi_y_max
-
roi_y_min
,
roi_y_max
-
roi_y_min
)
for
i
in
range
(
n_frames
-
1
):
print
(
'Frame {}'
.
format
(
i
+
1
))
wx
=
np
.
genfromtxt
(
path
+
'wx_frame{}.dat'
.
format
(
i
+
1
),
dtype
=
np
.
float
,
delimiter
=
','
)
wy
=
np
.
genfromtxt
(
path
+
'wy_frame{}.dat'
.
format
(
i
+
1
),
dtype
=
np
.
float
,
delimiter
=
','
)
grad_wx
=
np
.
gradient
(
wx
)
grad_wy
=
np
.
gradient
(
wy
)
divergence
=
grad_wx
[
1
]
+
grad_wy
[
0
]
frobenius
=
np
.
sqrt
(
np
.
square
(
grad_wx
[
0
])
+
np
.
square
(
grad_wx
[
1
])
+
np
.
square
(
grad_wy
[
0
])
+
np
.
square
(
grad_wy
[
1
]))
#output[i,:,:images.shape[2]]=images[i+1]
#output[i,:,images.shape[2]:]=frobenius
frobenius_output
[
i
+
1
,:,:]
=
frobenius
divergence_output
[
i
+
1
,:,:]
=
divergence
#fig = Figure(figsize=(4, 4), dpi=80)
#canvas = FigureCanvas(fig)
#ax = fig.gca()
#ax.streamplot(x,y,wx[roi_y_min:roi_y_max,roi_x_min:roi_x_max],wy[roi_y_min:roi_y_max,roi_x_min:roi_x_max])
#ax.axis('off')
#canvas.draw() # draw the canvas, cache the renderer
#vectors[i,:,:,:] = np.reshape(np.fromstring(canvas.tostring_rgb(), dtype='uint8'),(320,320,3))
#max_frobenius = np.max(output[:,:,images.shape[2]:].flatten())
#print(max_frobenius)
#flat = images.flatten()
#idx = np.isnan(flat)
#print(np.max(flat[]))
#print(output[:,:,images.shape[2]:])
#output[:,:,images.shape[2]:]=output[:,:,images.shape[2]:]/max_frobenius*255#(2**31-1)
#print(output[:,:,images.shape[2]:])
#io.imsave('smoothness.tif',output.astype(np.float32))
os
.
makedirs
(
out
,
exist_ok
=
True
)
#io.imsave(out+'roi.tif',images[:,roi_y_min:roi_y_max,roi_x_min:roi_x_max].astype(np.float32))
io
.
imsave
(
out
+
'frobenius.tif'
,
frobenius_output
[:,
roi_y_min
:
roi_y_max
,
roi_x_min
:
roi_x_max
]
.
astype
(
np
.
float32
))
#io.imsave(out+'vectors.tif',vectors.astype(np.uint8))
io
.
imsave
(
out
+
'div_out.tif'
,
divergence_output
.
astype
(
np
.
float32
))
#divergence_roi = divergence_output[:,roi_y_min:roi_y_max,roi_x_min:roi_x_max]
#divergence_seperated=np.zeros((n_frames,roi_y_max-roi_y_min,(roi_x_max-roi_x_min)*2))
#idx_plus = np.where(divergence_roi>0)
#divergence_seperated[idx_plus] = divergence_roi[idx_plus]
#divergence_roi[idx_plus] = 0
#divergence_seperated[:,:,roi_x_max-roi_x_min:] = divergence_roi*-1
#io.imsave(out+'divergence.tif',divergence_seperated.astype(np.float32))
#matplotlib.use('TkAgg')
#plt.figure()
#plt.hist(divergence_output.flatten())
#plt.savefig('histogram_complete.pdf')
#
#plt.figure()
#roi_y_min=307
#roi_y_max=364
#roi_x_min=361
#roi_x_max=422
#plt.hist(divergence_output[:,roi_y_min:roi_y_max,roi_x_min:roi_x_max].flatten())
#plt.savefig('histogram_roi.pdf')
except
FileNotFoundError
:
print
(
'lambda={} gamma={} not found'
.
format
(
l
,
g
))
pool
=
Pool
()
pool
.
map
(
func
,[
100
,
200
,
300
,
400
,
500
,
600
,
700
,
800
,
900
,
1000
])
Event Timeline
Log In to Comment