Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120724674
deep_matching.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Jul 6, 14:18
Size
31 KB
Mime Type
text/x-c
Expires
Tue, Jul 8, 14:18 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27237671
Attached To
R6289 Motion correction paper
deep_matching.cpp
View Options
/*
Copyright (C) 2014 Jerome Revaud
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>
*/
#include "deep_matching.h"
#include "std.h"
#include "conv.h"
#include "maxfilter.h"
using namespace std;
// return size of atomic patches
int get_atomic_patch_size( const dm_params_t* params )
{
int upsize = (1 << params->prior_img_downscale);
return 4*upsize;
}
// crop dimensions to a multiple of patch_size
void get_source_shape( const int width, const int height, const int patch_size, int* res ) {
// crop the reference image to a multiple of patch size
res[0] = patch_size * int(width / patch_size);
res[1] = patch_size * int(height / patch_size);
}
// extract pixel descriptor for both images
void extract_image_desc( image_t* img0, image_t* img1, const dm_params_t* params,
float_layers** desc0, float_layers** desc1 )
{
// slightly reduce img0 size to fit the patch tiling
int patch_size = get_atomic_patch_size( params );
int size[2]; // = {width, height}
get_source_shape( img0->width, img0->height, patch_size, size );
image_crop(img0, size[0], size[1]);
// extract gradient-based information
*desc0 = extract_desc( img0, ¶ms->desc_params, params->n_thread );
*desc1 = extract_desc( img1, ¶ms->desc_params, params->n_thread );
}
void avgpool2( float_layers* hog, const dm_params_t* params )
{
int niter = params->prior_img_downscale;
while(niter--) {
float_layers res = empty_layers(float,hog->tx/2,hog->ty/2,hog->tz);
_avgpool2(hog,&res,params->n_thread);
// replace hog by res
free(hog->pixels);
*hog = res;
}
}
/* compute the grid of parent cell position, and their connection to children cells
cells can be half-overlapping if <overlap>=1
<dense_step> forces the grid spacing if >0
*/
void prepare_big_cells( const int imshape[2], int cell_size, int overlap, int child_overlap,
int_cube* child_grid, float_image* child_norms, int dense_step,
int_cube* grid, int_cube* children, float_image* norms )
{
int offset, step, gtx, gty;
if( dense_step ) {
step = dense_step;
offset = 0;
// we do not care if the patches are overlapping outside the image
#define grid_size(imsize) (1+imsize/step)
gtx = grid_size(imshape[0]);
gty = grid_size(imshape[1]);
#undef grid_size
} else {
// we want patches fully included in the image
offset = cell_size/2;
step = cell_size/(overlap+1);
#define grid_size(imsize) (1+MAX(0,imsize-2*offset)/step)
gtx = grid_size(imshape[0]);
gty = grid_size(imshape[1]);
#undef grid_size
}
assert(!grid->pixels);
*grid = empty_cube(int,gtx,gty,2);
assert(0<=overlap && overlap<=1);
int nc = pow2(2+child_overlap); // number of children per cell
if(child_grid) {
assert(!norms->pixels);
*norms = image_like(float,grid);
assert(!children->pixels);
*children = empty_cube(int,gtx,gty,nc);
}
_prepare_big_cells( cell_size, offset, step, child_grid, child_norms, grid, children, norms );
}
void sample_patches( float_layers* hog, int_cube* pos, int patch_size, int f, float norm, int n_thread,
float_image* patches, float_array* norms )
{
assert(norm>0);
const int npos = pos->tx*pos->ty;
int_image new_pos = empty_image(int,2,npos);
for(int i=0; i<2*npos; i++)
new_pos.pixels[i] = (pos->pixels[i]-patch_size/2)/f;
patch_size /= f;
const int nh = get_patch_desc_dim(hog,patch_size);
assert(!patches->pixels);
*patches = empty_image(float,nh,npos);
assert(norms->tx==npos);
_sample_patches( hog, NULL, &new_pos, patch_size, norm, patches, norms, n_thread );
free(new_pos.pixels);
}
const float trans_inv = 0.9f;
void convolve_atomic_patches( float_layers* source, float_layers* target,
const dm_params_t* params, res_scale* first_level )
{
const int extend = 1; // slightly spatially extend response maps
const float norm = 1; // renorm patches
const int f = first_level->f; // scale factor w.r.t. original image
const int psize = first_level->patch_size; // current patch size
// first, sample patches
float_image patches = {0};
assert(!first_level->norms.pixels);
first_level->norms = image_like(float, &first_level->grid);
float_array norms_arr = {first_level->norms.pixels, (int)IMG_SIZE(&first_level->norms)};
sample_patches( source, &first_level->grid, psize, f, norm, params->n_thread, &patches, &norms_arr );
//hash_image(&patches)
// rectify the norm to a boolean (0 or 1) (useless ?)
first_level->assign = empty_array(int,norms_arr.tx);
int n=0, tx = patches.tx;
for(int i=0; i<norms_arr.tx; i++) {
norms_arr.pixels[i] = norms_arr.pixels[i]>0;
// eliminate zero-norm patches
if( norms_arr.pixels[i] ) {
if( n < i ) // copy
memcpy( patches.pixels + n*tx, patches.pixels + i*tx, tx*sizeof(float));
first_level->assign.pixels[i] = n++;
} else
first_level->assign.pixels[i] = -1;
// convolution is not fully invariant to the image border:
// blank cells outside the image are a bit disadvantageous
if( norms_arr.pixels[i] == 0 )
norms_arr.pixels[i] = 1-trans_inv;
}
patches.ty = n; // update new number of valid patches
//hash_image(&first_level->norms)
//hash_image(&patches)
// compute the first level convolutions
fastconv( &patches, target, psize/f, params->ngh_rad/f, extend, norm, params->n_thread, first_level );
free(patches.pixels);
}
int_image* maxpool3_and_subsample2( float_layers* hog, int true_shape[2], int_image* offsets, float_layers* res, int nt )
{
assert(!res->pixels);
if ( offsets->pixels == NULL )
assert( hog->tx == true_shape[0] && hog->ty == true_shape[1] );
// set downsampled size
true_shape[0] = (true_shape[0]+1)/2;
true_shape[1] = (true_shape[1]+1)/2;
assert( true_shape[0]>0 && true_shape[1]>0 );
if ( offsets->pixels == NULL ) {
// joint max-pooling and subsampling
*res = empty_layers(float, true_shape[0], true_shape[1], hog->tz);
_max_filter_3_and_subsample_layers( hog, res, nt );
return NULL;
} else {
// with offsets
float_layers maxpooled_hog = layers_like(float, hog);
_max_filter_3_layers( hog, &maxpooled_hog, nt );
//CHECK_MAPS(&maxpooled_hog);
// slightly bigger, so that mininum size always >= 2
int width = (hog->tx+2)/2;
int height = (hog->ty+2)/2;
*res = empty_layers(float, width, height, hog->tz);
_subsample2_offset( &maxpooled_hog, offsets, res, nt );
free(maxpooled_hog.pixels);
// compute new offsets
int_image* res_offsets = NEW(int_image);
*res_offsets = image_like(int, offsets);
for(long i=0; i<IMG_SIZE(offsets); i++)
res_offsets->pixels[i] = (int)floor( offsets->pixels[i]/2.f );
return res_offsets;
}
}
#define CHECK_MAPS(rmaps) assert(min_array_f((rmaps)->pixels,LAYERS_SIZE(rmaps))>=0 && \
max_array_f((rmaps)->pixels,LAYERS_SIZE(rmaps))<=1.001)
/* aggregate response maps of children patches to form response maps of parent patches */
int sparse_conv( int_cube* children, int_array* children_assign, float_image* child_norms,
int true_patch_size, float_layers* map, int_image* offsets, int nt,
res_scale* res )
{
float_layers ext_map;
if( MIN(map->tx,map->ty) < 5 ) {
ext_map = zeros_layers(float,MAX(5,map->tx),MAX(5,map->ty),map->tz);
for(int l=0; l<map->tz; l++)
for(int j=0; j<map->ty; j++)
for(int i=0; i<map->tx; i++)
ext_map.pixels[(l*ext_map.ty + j)*ext_map.tx + i] = map->pixels[(l*map->ty + j)*map->tx + i];
map = &ext_map;
res->true_shape[0] = ext_map.tx;
res->true_shape[1] = ext_map.ty;
}
int_image _children = reshape_z_xy(int, &res->children);
if( offsets )
res->offsets = empty_image(int, 2, _children.ty);
assert(!res->res_map.pixels);
res->res_map = empty_layers(float, map->tx, map->ty, _children.ty);
int gap = true_patch_size / 4;
assert(gap>0);
float_array _norms = reshape_xy(float, &res->norms);
float_array _child_norms = reshape_xy(float, child_norms);
// allocate useless assign
res->assign = empty_array(int, res->res_map.tz);
for(int i=0; i<res->assign.tx; i++) res->assign.pixels[i] = i;
int_array* _assign = NULL;
int_array* _ch_assign = children_assign->pixels ? children_assign : NULL;
int n = _sparse_conv( &_children, _ch_assign, gap, trans_inv, map, offsets,
&_child_norms, &_norms, _assign, &res->res_map, &res->offsets, nt );
//CHECK_MAPS(res);
if(map==&ext_map) free(ext_map.pixels);
return n;
}
res_scale new_pyramid_level(int f, int psize)
{
res_scale res = {0}; // initialize everything to 0/NULL
res.f = f; // subsampling factor with respect to original image size
res.patch_size = psize; // patch size in original image coordinates
return res;
}
// Compute the multi-scale pyramid response
void compute_matching_pyr( float_layers* source, float_layers* target, const dm_params_t* params,
matching_pyramid_t& res_maps )
{
const int src_shape[2] = {source->tx, source->ty};
int L = 0; // current pyramid level
const int atomic_psize = get_atomic_patch_size( params );
int psize = atomic_psize; // will grow by a factor 2 at each level
int f = psize/4; // initial scaling factor
// subsample if needed
avgpool2( source, params );
avgpool2( target, params );
//hash_layers(source)
//hash_layers(target)
res_maps.clear();
res_maps.push_back(new_pyramid_level(f,psize));
res_scale *child, *last = &res_maps[res_maps.size()-1];
// compute the initial patches in source image
if( params->verbose ) std_printf("layer %d, patch_size = %dx%d\n", L, psize, psize);
prepare_big_cells( src_shape, psize, params->overlap<L+1, 0, NULL, NULL, 0, &last->grid, NULL, NULL );
//hash_cube(&last->grid)
//hash_layers(source)
convolve_atomic_patches( source, target, params, last );
//hash_layers(&last->res_map)
if( params->verbose )
std_printf("remaining %ld big cells (actually, %d are unique)\n", IMG_SIZE(&last->grid), last->res_map.tz);
// non-linear correction
if( params->nlpow>0 )
fastipow( &last->res_map, params->nlpow, params->n_thread );
//hash_layers(&last->res_map)
const int dense_step = params->subsample_ref ? 0 : psize/(1+(params->overlap<1));
// aggregate patches for all subsequent levels
while( 2*psize <= MIN(params->max_psize, MAX(src_shape[0], src_shape[1])) ) {
L++;
f *= 2;
psize *= 2;
res_maps.push_back(new_pyramid_level(f,psize));
child = &res_maps[res_maps.size()-2]; // previous level
last = &res_maps[res_maps.size()-1]; // current level
if( params->verbose ) std_printf("layer %d, patch_size = %dx%d\n", L, psize, psize);
// max pooling + subsampling
//CHECK_MAPS(&child->res_map);
last->true_shape[0] = child->true_shape[0]; // will be modified in subsampled2()
last->true_shape[1] = child->true_shape[1];
float_layers subs_res_map = {0};
int_image* offsets = maxpool3_and_subsample2( &child->res_map, last->true_shape, &child->offsets,
&subs_res_map, params->n_thread );
//CHECK_MAPS(&subs_res_map);
// build the set of patches at this scale
prepare_big_cells( src_shape, psize, params->overlap<L+1, params->overlap<L,
&child->grid, &child->norms, dense_step, &last->grid, &last->children, &last->norms );
//DA(last->true_shape,2)
//hash_cube(&last->grid)
//hash_image(&last->norms)
//hash_cube(&last->children)
// aggregate children response maps to form parent response maps
sparse_conv( &last->children, &child->assign, &child->norms, psize/f, &subs_res_map, offsets,
params->n_thread, last );
free(subs_res_map.pixels);
free_image(offsets);
//CHECK_MAPS(&last->res_map);
if( params->verbose )
std_printf("remaining %ld big cells (actually, %d are unique)\n", IMG_SIZE(&last->grid), last->res_map.tz);
// non-linear correction
if( params->nlpow>0 )
fastipow(&last->res_map, params->nlpow, params->n_thread );
//hash_layers(&last->res_map)
}
}
void free_matching_pyramid( matching_pyramid_t& res_maps ) {
unsigned int i;
for(i=0; i<res_maps.size(); i++) {
res_scale& level = res_maps[i];
free(level.grid.pixels);
free(level.norms.pixels);
free(level.assign.pixels);
free(level.res_map.pixels);
free(level.max_map.pixels);
free(level.children.pixels);
free(level.passed.pixels);
}
}
#ifdef __APPLE__
static int arg_sort_maxima(void* arr, const void* a, const void* b) {
float diff = ((float*)arr)[5*(*(int*)a)+4] - ((float*)arr)[5*(*(int*)b)+4];
return (diff<0) - (diff>0); // descending order
}
#else
static int arg_sort_maxima(const void* a, const void* b, void* arr) {
float diff = ((float*)arr)[5*(*(int*)a)+4] - ((float*)arr)[5*(*(int*)b)+4];
return (diff<0) - (diff>0); // descending order
}
#endif
void reorder_rows( int_image* img, int_array* order )
{
assert(order->tx==img->ty);
const int tx = img->tx;
int_image res = image_like(int, img);
for(int i=0; i<order->tx; i++)
memcpy(res.pixels + i*tx, img->pixels+order->pixels[i]*tx, tx*sizeof(int));
free(img->pixels);
*img = res;
}
// return points corresponding to patch matches
int_image* find_optimal_matchings( matching_pyramid_t& mp, const dm_params_t* params )
{
const int nobordure = 0;
int_image* maxima = NEW(int_image);
int_array order = {0};
if( params->maxima_mode ) { // normal process: maxima detection
float th=0;
int check_parents=false, check_children=false;
float_array sc_maxima = empty_array(float,int(mp.size()));
for(unsigned int i=0; i<mp.size(); i++) sc_maxima.pixels[i]=1; // useless but well
_extract_maxima( mp.data(), mp.size(), &sc_maxima, th, params->min_level, params->nlpow,
check_parents, check_children, nobordure, maxima, params->n_thread );
free(sc_maxima.pixels);
order = empty_array(int,maxima->ty);
for(int i=0; i<maxima->ty; i++) order.pixels[i] = maxima->ty-1-i; // last first
} else { // we just analyse all cells at the top level
const float_layers* rmap = &mp[mp.size()-1].res_map;
const int tx = rmap->tx, txy=tx*rmap->ty;
*maxima = empty_image(int, 5, (int)LAYERS_SIZE(rmap));
for(int i=0; i<maxima->ty; i++) {
int* row = maxima->pixels + 5*i;
row[0] = mp.size()-1; // pyramid level
row[1] = i/txy; // layer number
row[2] = i%tx; // x position
row[3] = (i%txy)/tx; // y position
((float*)row)[4] = rmap->pixels[i];
}
//hash_image(maxima)
order = empty_array(int,maxima->ty);
for(int i=0; i<maxima->ty; i++) order.pixels[i] = i;
#ifdef __APPLE__
qsort_r(order.pixels, maxima->ty, sizeof(int), maxima->pixels, arg_sort_maxima);
#else
qsort_r(order.pixels, maxima->ty, sizeof(int), arg_sort_maxima, maxima->pixels);
#endif
}
if( params->verbose>0 )
std_printf("found %d local matches\n",maxima->ty);
// reorder maxima
reorder_rows( maxima, &order );
free(order.pixels);
return maxima;
}
static inline float ptdot( const float* m, float x, float y ) {
return x*m[0] + y*m[1] + m[2];
}
void apply_rot( float_cube* corres, float rot[6] ) {
assert( corres->tz == 6 );
const int nb = IMG_SIZE(corres);
float* p = corres->pixels;
for(int i=0; i<nb; i++) {
// only apply to coordinates of the first image
float x = p[0], y = p[1];
p[0] = ptdot(rot+0, x, y);
p[1] = ptdot(rot+3, x, y);
p += 6;
}
}
/* this function gather correspondences from each local maximum in the
response maps
*/
float_image* gather_correspondences( int src_shape[2], int target_shape[2],
matching_pyramid_t& scales, int_image* maxima,
const dm_params_t* params, full_corres_t* corres_out )
{
const int step = 4*scales[0].f; // bin size
const int n_scales = (int)scales.size();
const int tx = maxima->tx;
const int n_maxima = maxima->ty;
float_cube corres0 = zeros_cube(float, (src_shape[0]+step-1)/step, (src_shape[1]+step-1)/step,6);
float_cube corres1 = zeros_cube(float, (target_shape[0]+step-1)/step, (target_shape[1]+step-1)/step,6);
int i;
// allocate temporary optimization maps
for(i=0; i<n_scales; i++) {
long size = LAYERS_SIZE(&scales[i].res_map);
if( params->low_mem && size > 1000003 ) size = 1000003; // big prime
assert( size <= 2147483647 || !"try using -mem parameter");
scales[i].passed = zeros_array(float, (int)size);
}
#if defined(USE_OPENMP)
#pragma omp parallel for schedule(static,1) num_threads(params->n_thread)
#endif
for(i=0; i<n_maxima; i++) {
if(params->verbose && i%100==0) std_printf("\rgathering correspondences %d%%...",100*i/n_maxima);
int* m = maxima->pixels + tx*i;
int level = m[0], num_map = m[1];
int x = m[2], y = m[3];
assert(level<n_scales);
if( scales[level].offsets.pixels ) {
// add offset to form real image coordinates
x += scales[level].offsets.pixels[2*num_map+0];
y += scales[level].offsets.pixels[2*num_map+1];
}
if( params->scoring_mode ) // new mode
_argmax_correspondences( scales.data(), level, num_map, x, y, ((float*)m)[4],
&corres0, step, &corres1, step, i );
else // old iccv mode
_argmax_correspondences_v1( scales.data(), level, num_map, x, y, m[0]*((float*)m)[4],
&corres0, step, &corres1, step, i );
}
// free optimization maps
for(i=0; i<n_scales; i++) {
free( scales[i].passed.pixels );
scales[i].passed.pixels = NULL;
}
if(params->verbose) std_printf("\n");
if( params->rot45 ) { // rectify correspondences
assert( corres_out );
apply_rot( &corres0, corres_out->rot );
apply_rot( &corres1, corres_out->rot );
}
// keep only reciprocal matches
int nres;
float* corres = _intersect_corres( &corres0, &corres1, &nres );
float_image* res = NEW(float_image);
*res = (float_image){corres, 6, nres};
if( corres_out == NULL ) {
free(corres0.pixels);
free(corres1.pixels);
}
else { // save unfiltered correspondences
corres_out->corres0 = corres0;
corres_out->corres1 = corres1;
}
return res;
}
void eye_rot3x3( float rot[6] ) {
memset( rot, 0, 6*sizeof(float));
rot[0] = rot[4] = 1;
}
inline float bilinear_interp(const float* img, const int tx, const int ty, float x, float y ) {
if( x < 0 || x+1.001 >= tx ) return 0; // outside
if( y < 0 || y+1.001 >= ty ) return 0; // outside
int ix = int(x);
int iy = int(y);
img += ix + iy*tx; // move pointer
float rx = x - ix;
float ry = y - iy;
return (1-ry)*((1-rx)*img[0] + rx*img[1]) +
ry *((1-rx)*img[tx]+ rx*img[tx+1]);
}
void scale_rot3x3( float rot[6], float sc ) {
for(int i=0; i<6; i++)
rot[i] *= sc;
}
void inv_rot3x3( float rot[6], float res[6] ) {
assert( fabs((rot[0]*rot[4] - rot[1]*rot[3]) - 1) < 1e-6 );
// because rot is unitary, invert == transpose
res[0] = rot[0];
res[1] = rot[3];
res[3] = rot[1];
res[4] = rot[4];
res[2] = -rot[2]*rot[0] - rot[5]*rot[3];
res[5] = -rot[2]*rot[1] - rot[5]*rot[4];
}
// rotate a descriptor HOG image by a given angle
float_layers* rotate45( float_layers* hog, const dm_params_t* params, full_corres_t* corres_out ) {
assert( corres_out ); // we need it to write rot !
const int patch_size = get_atomic_patch_size( params );
const int n_rot45 = params->rot45;
if( (n_rot45 % 8) == 0 ) { // nothing to do
eye_rot3x3( corres_out->rot );
return hog;
}
const int tx = hog->tx;
const int ty = hog->ty;
// rotation matrix
float angle = n_rot45 * M_PI / 4;
float c = cos(angle), s = sin(angle);
float rot[6] = {c, -s, 0, s, c, 0};
// pt_in_original_image = rot * pt_in_rotated_image
// determine center of rotation before
float cx_before = tx/2.0;
float cy_before = ty/2.0;
// determine center of rotation after
float corners[2][4] = {{0, (float)tx, (float)tx, 0}, {0, 0, (float)ty, (float)ty}};
for(int i=0; i<4; i++) { // rotate corners
float x = corners[0][i], y = corners[1][i];
corners[0][i] = ptdot(rot+0, x, y);
corners[1][i] = ptdot(rot+3, x, y);
}
int rot_size[2] = {int(0.5 + max_array_f(corners[0], 4) - min_array_f(corners[0], 4)),
int(0.5 + max_array_f(corners[1], 4) - min_array_f(corners[1], 4)) };
get_source_shape( rot_size[0], rot_size[1], patch_size, rot_size );
float cx_after = rot_size[0]/2.0;
float cy_after = rot_size[1]/2.0;
// compute the translation
rot[2] = cx_before - ptdot(rot+0, cx_after, cy_after);
rot[5] = cy_before - ptdot(rot+3, cx_after, cy_after);
// create result
assert( hog->tz == 9 );
float_layers* rot_hog = NEW(float_layers);
*rot_hog = empty_layers(float, rot_size[0], rot_size[1], 9);
for(int c=0; c<hog->tz; c++) {
const int src_c = (c<8) ? int((c+n_rot45+256)%8) : c; // roll channels except for last one (see hog.h)
const float* f = hog->pixels + src_c * IMG_SIZE(hog);
float* p = rot_hog->pixels + c * IMG_SIZE(rot_hog);
for(int y=0; y<rot_size[1]; y++)
for(int x=0; x<rot_size[0]; x++) {
float rx = ptdot( rot+0, x, y);
float ry = ptdot( rot+3, x, y);
*p++ = bilinear_interp(f, tx, ty, rx, ry );
}
}
// output inverted rot
memcpy( corres_out->rot, rot, 6*sizeof(float) );
return rot_hog;
}
// set default parameters
void set_default_dm_params( dm_params_t* params )
{
// pixel descriptor params
set_default_desc_params( ¶ms->desc_params );
// general parameters
params->prior_img_downscale = 1; // resolution R = 1/2^downscale, default = 1/2
params->rot45 = 0; // don't rotate the first image
params->overlap = 999; // don't use overlapping patches
params->subsample_ref = false; // don't subsample patches in reference image (=first image)
params->nlpow = 1.4;
params->ngh_rad = 0; // no limit by default
params->maxima_mode = 0; // don't use maxima, just start from all top patches
params->min_level = 2; // useless
params->max_psize = 999; // maximum patch size
params->low_mem = true; // optimize mem but then results are slightly unstable/non-reproducible
params->verbose = 0;
params->scoring_mode = 1; // improved scoring scheme
params->n_thread = 1; // no multithreading by default
}
// main function
float_image* deep_matching( image_t* img0, image_t* img1, const dm_params_t* params, full_corres_t* corres_out )
{
// verify parameters
assert(between(0,params->prior_img_downscale,3));
assert(between(0,params->overlap,999));
assert(between(0,params->subsample_ref,1));
assert(between(0.1,params->nlpow,10));
assert(between(0,params->ngh_rad,1<<16));
assert(between(0,params->maxima_mode,1));
assert(between(0,params->min_level,4));
assert(between(0,params->low_mem,1));
assert(between(0,params->scoring_mode,1));
assert(between(0,params->verbose,10));
assert(between(1,params->n_thread,128));
// extract pixel descriptors
float_layers *source, *target;
extract_image_desc( img0, img1, params, &source, &target );
if( corres_out ) // the first image is rotated
source = rotate45( source, params, corres_out );
int src_shape[2] = {source->tx, source->ty};
assert( LAYERS_SIZE(source) > 0 );
int target_shape[2] = {target->tx, target->ty};
assert( LAYERS_SIZE(target) > 0 );
//hash_layers(source)
//hash_layers(target)
// compute local matchings
matching_pyramid_t matching_pyr;
compute_matching_pyr( source, target, params, matching_pyr );
free_layers(source);
free_layers(target);
//hash_layers(&matching_pyr[matching_pyr.size()-1].res_map);
// find optmial matchings (maxima)
int_image* maxima = find_optimal_matchings(matching_pyr, params);
//hash_image(maxima);
// select the best displacements (maxpool merge)
float_image* corres = gather_correspondences( src_shape, target_shape, matching_pyr, maxima, params, corres_out );
//hash_image(corres);
// free everything
free_matching_pyramid(matching_pyr);
free_layers(maxima);
return corres;
}
void swap_first_second_img( float_cube* corres ) {
assert( corres->tz == 6 );
const int nb = IMG_SIZE(corres);
float* p = corres->pixels;
for(int i = 0; i < nb; i++) {
float a = p[0];
float b = p[1];
float c = p[2];
float d = p[3];
*p++ = c;
*p++ = d;
*p++ = a;
*p++ = b;
p += 2;
}
}
void rescale_corres( float_cube* corres, float f0, float f1, int code ) {
assert( corres->tz == 6 );
const int nb = IMG_SIZE(corres);
float* p = corres->pixels;
for(int i = 0; i < nb; i++) {
p[0] *= f0;
p[1] *= f0;
p[2] *= f1;
p[3] *= f1;
p[5] = code;
p += 6;
}
}
// set default parameters
void set_default_scalerot_params( scalerot_params_t* params ) {
params->fast = true;
params->min_sc0 = 0; // scale = 2^(-0/2) = 1
params->max_sc0 = 5; // scale = 2^(-5/2) = 0.176
params->min_sc1 = 0;
params->max_sc1 = 5;
params->min_rot = 0; // rot = 0*45 = 0
params->max_rot = 8; // rot = 8*45 = 360
}
// main function for scale/rotation invariant version
float_image* deep_matching_scale_rot( image_t* img0, image_t* img1, dm_params_t* params,
const scalerot_params_t* sr_params ) {
// verify parameters
assert(sr_params->min_sc0 < sr_params->max_sc0);
assert(sr_params->min_sc1 < sr_params->max_sc1);
assert(between(0, sr_params->min_sc0, 5));
assert(between(0, sr_params->max_sc0, 5));
assert(between(0, sr_params->min_sc1, 5));
assert(between(0, sr_params->max_sc1, 5));
assert(sr_params->min_rot >= 0);
assert(between(1,sr_params->max_rot - sr_params->min_rot, 8));
// init shape
const int psize = get_atomic_patch_size(params);
int imshape0[2];
get_source_shape( img0->width, img0->height, psize, imshape0 );
int imshape1[2] = {img1->width, img1->height};
// check dm params to ensure everything goes fine from now on
#define mean_dim(shape) ((shape[0] + shape[1])/2)
params->max_psize = MIN(mean_dim(imshape0), mean_dim(imshape1));
const int verbose = params->verbose;
params->verbose = MAX(0, verbose - 1); // decrease for inner deepmatchings
// prepare output
const int step0 = psize/2;
const int step1 = psize/2;
float_cube all_corres0 = zeros_cube(float, (imshape0[0]+step0/2-1)/step0, (imshape0[1]+step0/2-1)/step0, 6);
float_cube all_corres1 = zeros_cube(float, (imshape1[0]+step1/2-1)/step1, (imshape1[1]+step1/2-1)/step1, 6);
full_corres_t out;
const int NS = 5;
image_t *scaled_images1[NS] = {NULL};
// loop over all scale*rot combinations
for(int sc0 = sr_params->min_sc0;
sc0 < sr_params->max_sc0;
sc0++) {
const float scale0 = pow(2, -0.5*sc0 ); // scale factor for img0
assert( scale0<=1 && sc0<5 );
image_t* scaled_img0 = ( scale0 >= 1 ) ? img0 :
image_resize_bilinear_scale( img0, scale0 );
for(int sc1 = sr_params->min_sc1;
sc1 < sr_params->max_sc1;
sc1++) {
const float scale1 = pow(2, -0.5*sc1 ); // scale factor for img1
assert( scale1<=1 && sc1<5 );
// optimization, deactivate only if eg. both images are blurry
if( sr_params->fast && !(scale0==1 || scale1==1)) continue;
image_t* scaled_img1 = scaled_images1[sc1 - sr_params->min_sc1];
if( scaled_img1 == NULL ) {
scaled_img1 = ( scale1 >= 1 ) ? img1 :
image_resize_bilinear_scale( img1, scale1 );
// remember result
scaled_images1[sc1 - sr_params->min_sc1] = scaled_img1;
}
for(int rotation = sr_params->min_rot;
rotation < sr_params->max_rot;
rotation++) {
assert( rotation >= 0 );
const int rot_scale_code = 8*(sc1*5+sc0) + (rotation%8); // cannot be negative, because of bin count
if( verbose )
std_printf( "processing scale = (x%g, x%g) + rotation = %d deg (code %d)...\n",
scale0, scale1, 45*rotation, rot_scale_code);
float rot0[6], rot1[6];
// compute correspondences with rotated+scaled image
#define max_dim(img) MAX(img->width, img->height)
if( max_dim(scaled_img0) >= max_dim(scaled_img1) ) { // first image is always the largest
params->rot45 = rotation;
float_image* corres = deep_matching(scaled_img0, scaled_img1, params, &out );
free_image( corres ); // we don't care
inv_rot3x3(out.rot, rot0);
eye_rot3x3(rot1);
} else { // scaled_img1 is larger
params->rot45 = -rotation;
float_image* corres = deep_matching(scaled_img1, scaled_img0, params, &out );
free_image( corres ); // we don't care
// swap first and second image coordinates
memswap( &out.corres0, &out.corres1, sizeof(float_cube) );
swap_first_second_img( &out.corres0 );
swap_first_second_img( &out.corres1 );
inv_rot3x3(out.rot, rot1);
eye_rot3x3(rot0);
}
// change scale of correspondences
rescale_corres( &out.corres0, 1/scale0, 1/scale1, rot_scale_code );
rescale_corres( &out.corres1, 1/scale0, 1/scale1, rot_scale_code );
scale_rot3x3(rot0, scale0);
scale_rot3x3(rot1, scale1);
// merge correspondences in the reference frame
merge_corres( rot0, rot1,
psize, psize, &out.corres0, &out.corres1, 2,
step0, step1, &all_corres0, &all_corres1 ); // finer grid for merge
free(out.corres0.pixels);
free(out.corres1.pixels);
}
}
// free memory
if( img0 != scaled_img0 )
image_delete( scaled_img0 );
}
// final intersection
int nres;
float* corres = _intersect_corres( &all_corres0, &all_corres1, &nres );
float_image* res = NEW(float_image);
*res = (float_image){corres, 6, nres};
// free memory
for(int i=0; i<NS; i++)
if( scaled_images1[i] != img1 )
image_delete( scaled_images1[i] );
free(all_corres0.pixels);
free(all_corres1.pixels);
return res;
}
Event Timeline
Log In to Comment