Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102344934
pair_brownian_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Feb 19, 17:44
Size
10 KB
Mime Type
text/x-c++
Expires
Fri, Feb 21, 17:44 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24335316
Attached To
rLAMMPS lammps
pair_brownian_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
This software is distributed under the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "math.h"
#include "pair_brownian_omp.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "force.h"
#include "input.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "update.h"
#include "variable.h"
#include "random_mars.h"
#include "math_const.h"
#include "math_special.h"
#include "fix_wall.h"
#include "suffix.h"
using
namespace
LAMMPS_NS
;
using
namespace
MathConst
;
using
namespace
MathSpecial
;
#define EPSILON 1.0e-10
// same as fix_wall.cpp
enum
{
EDGE
,
CONSTANT
,
VARIABLE
};
/* ---------------------------------------------------------------------- */
PairBrownianOMP
::
PairBrownianOMP
(
LAMMPS
*
lmp
)
:
PairBrownian
(
lmp
),
ThrOMP
(
lmp
,
THR_PAIR
)
{
suffix_flag
|=
Suffix
::
OMP
;
respa_enable
=
0
;
random_thr
=
NULL
;
}
/* ---------------------------------------------------------------------- */
PairBrownianOMP
::~
PairBrownianOMP
()
{
if
(
random_thr
)
{
for
(
int
i
=
1
;
i
<
comm
->
nthreads
;
++
i
)
delete
random_thr
[
i
];
delete
[]
random_thr
;
random_thr
=
NULL
;
}
}
/* ---------------------------------------------------------------------- */
void
PairBrownianOMP
::
compute
(
int
eflag
,
int
vflag
)
{
if
(
eflag
||
vflag
)
{
ev_setup
(
eflag
,
vflag
);
}
else
evflag
=
vflag_fdotr
=
0
;
const
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
const
int
nthreads
=
comm
->
nthreads
;
const
int
inum
=
list
->
inum
;
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
// in the volume fraction as a result of fix deform or moving walls
double
dims
[
3
],
wallcoord
;
if
(
flagVF
)
// Flag for volume fraction corrections
if
(
flagdeform
||
flagwall
==
2
){
// Possible changes in volume fraction
if
(
flagdeform
&&
!
flagwall
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
dims
[
j
]
=
domain
->
prd
[
j
];
else
if
(
flagwall
==
2
||
(
flagdeform
&&
flagwall
==
1
)){
double
wallhi
[
3
],
walllo
[
3
];
for
(
int
j
=
0
;
j
<
3
;
j
++
){
wallhi
[
j
]
=
domain
->
prd
[
j
];
walllo
[
j
]
=
0
;
}
for
(
int
m
=
0
;
m
<
wallfix
->
nwall
;
m
++
){
int
dim
=
wallfix
->
wallwhich
[
m
]
/
2
;
int
side
=
wallfix
->
wallwhich
[
m
]
%
2
;
if
(
wallfix
->
xstyle
[
m
]
==
VARIABLE
){
wallcoord
=
input
->
variable
->
compute_equal
(
wallfix
->
xindex
[
m
]);
}
else
wallcoord
=
wallfix
->
coord0
[
m
];
if
(
side
==
0
)
walllo
[
dim
]
=
wallcoord
;
else
wallhi
[
dim
]
=
wallcoord
;
}
for
(
int
j
=
0
;
j
<
3
;
j
++
)
dims
[
j
]
=
wallhi
[
j
]
-
walllo
[
j
];
}
double
vol_T
=
dims
[
0
]
*
dims
[
1
]
*
dims
[
2
];
double
vol_f
=
vol_P
/
vol_T
;
if
(
flaglog
==
0
)
{
R0
=
6
*
MY_PI
*
mu
*
rad
*
(
1.0
+
2.16
*
vol_f
);
RT0
=
8
*
MY_PI
*
mu
*
cube
(
rad
);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
}
else
{
R0
=
6
*
MY_PI
*
mu
*
rad
*
(
1.0
+
2.725
*
vol_f
-
6.583
*
vol_f
*
vol_f
);
RT0
=
8
*
MY_PI
*
mu
*
cube
(
rad
)
*
(
1.0
+
0.749
*
vol_f
-
2.469
*
vol_f
*
vol_f
);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
}
}
if
(
!
random_thr
)
random_thr
=
new
RanMars
*
[
nthreads
];
// to ensure full compatibility with the serial Brownian style
// we use is random number generator instance for thread 0
random_thr
[
0
]
=
random
;
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int
ifrom
,
ito
,
tid
;
loop_setup_thr
(
ifrom
,
ito
,
tid
,
inum
,
nthreads
);
ThrData
*
thr
=
fix
->
get_thr
(
tid
);
ev_setup_thr
(
eflag
,
vflag
,
nall
,
eatom
,
vatom
,
thr
);
// generate a random number generator instance for
// all threads != 0. make sure we use unique seeds.
if
(
random_thr
&&
tid
>
0
)
random_thr
[
tid
]
=
new
RanMars
(
Pair
::
lmp
,
seed
+
comm
->
me
+
comm
->
nprocs
*
tid
);
if
(
flaglog
)
{
if
(
evflag
)
{
if
(
force
->
newton_pair
)
eval
<
1
,
1
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
1
,
1
,
0
>
(
ifrom
,
ito
,
thr
);
}
else
{
if
(
force
->
newton_pair
)
eval
<
1
,
0
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
1
,
0
,
0
>
(
ifrom
,
ito
,
thr
);
}
}
else
{
if
(
evflag
)
{
if
(
force
->
newton_pair
)
eval
<
0
,
1
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
0
,
1
,
0
>
(
ifrom
,
ito
,
thr
);
}
else
{
if
(
force
->
newton_pair
)
eval
<
0
,
0
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
0
,
0
,
0
>
(
ifrom
,
ito
,
thr
);
}
}
reduce_thr
(
this
,
eflag
,
vflag
,
thr
);
}
// end of omp parallel region
}
template
<
int
FLAGLOG
,
int
EVFLAG
,
int
NEWTON_PAIR
>
void
PairBrownianOMP
::
eval
(
int
iifrom
,
int
iito
,
ThrData
*
const
thr
)
{
int
i
,
j
,
ii
,
jj
,
jnum
,
itype
,
jtype
;
double
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
fx
,
fy
,
fz
,
tx
,
ty
,
tz
;
double
rsq
,
r
,
h_sep
,
radi
;
int
*
ilist
,
*
jlist
,
*
numneigh
,
**
firstneigh
;
const
double
*
const
*
const
x
=
atom
->
x
;
double
*
const
*
const
f
=
thr
->
get_f
();
double
*
const
*
const
torque
=
thr
->
get_torque
();
const
double
*
const
radius
=
atom
->
radius
;
const
int
*
const
type
=
atom
->
type
;
const
int
nlocal
=
atom
->
nlocal
;
RanMars
&
rng
=
*
random_thr
[
thr
->
get_tid
()];
double
vxmu2f
=
force
->
vxmu2f
;
double
randr
;
double
prethermostat
;
double
xl
[
3
],
a_sq
,
a_sh
,
a_pu
,
Fbmag
;
double
p1
[
3
],
p2
[
3
],
p3
[
3
];
int
overlaps
=
0
;
// scale factor for Brownian moments
prethermostat
=
sqrt
(
24.0
*
force
->
boltz
*
t_target
/
update
->
dt
);
prethermostat
*=
sqrt
(
force
->
vxmu2f
/
force
->
ftm2v
/
force
->
mvv2e
);
ilist
=
list
->
ilist
;
numneigh
=
list
->
numneigh
;
firstneigh
=
list
->
firstneigh
;
// loop over neighbors of my atoms
for
(
ii
=
iifrom
;
ii
<
iito
;
++
ii
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
][
0
];
ytmp
=
x
[
i
][
1
];
ztmp
=
x
[
i
][
2
];
itype
=
type
[
i
];
radi
=
radius
[
i
];
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
// FLD contribution to force and torque due to isotropic terms
if
(
flagfld
)
{
f
[
i
][
0
]
+=
prethermostat
*
sqrt
(
R0
)
*
(
rng
.
uniform
()
-
0.5
);
f
[
i
][
1
]
+=
prethermostat
*
sqrt
(
R0
)
*
(
rng
.
uniform
()
-
0.5
);
f
[
i
][
2
]
+=
prethermostat
*
sqrt
(
R0
)
*
(
rng
.
uniform
()
-
0.5
);
if
(
FLAGLOG
)
{
torque
[
i
][
0
]
+=
prethermostat
*
sqrt
(
RT0
)
*
(
rng
.
uniform
()
-
0.5
);
torque
[
i
][
1
]
+=
prethermostat
*
sqrt
(
RT0
)
*
(
rng
.
uniform
()
-
0.5
);
torque
[
i
][
2
]
+=
prethermostat
*
sqrt
(
RT0
)
*
(
rng
.
uniform
()
-
0.5
);
}
}
if
(
!
flagHI
)
continue
;
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
delx
=
xtmp
-
x
[
j
][
0
];
dely
=
ytmp
-
x
[
j
][
1
];
delz
=
ztmp
-
x
[
j
][
2
];
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
jtype
=
type
[
j
];
if
(
rsq
<
cutsq
[
itype
][
jtype
])
{
r
=
sqrt
(
rsq
);
// scalar resistances a_sq and a_sh
h_sep
=
r
-
2.0
*
radi
;
// check for overlaps
if
(
h_sep
<
0.0
)
overlaps
++
;
// if less than minimum gap, use minimum gap instead
if
(
r
<
cut_inner
[
itype
][
jtype
])
h_sep
=
cut_inner
[
itype
][
jtype
]
-
2.0
*
radi
;
// scale h_sep by radi
h_sep
=
h_sep
/
radi
;
// scalar resistances
if
(
FLAGLOG
)
{
a_sq
=
6.0
*
MY_PI
*
mu
*
radi
*
(
1.0
/
4.0
/
h_sep
+
9.0
/
40.0
*
log
(
1.0
/
h_sep
));
a_sh
=
6.0
*
MY_PI
*
mu
*
radi
*
(
1.0
/
6.0
*
log
(
1.0
/
h_sep
));
a_pu
=
8.0
*
MY_PI
*
mu
*
cube
(
radi
)
*
(
3.0
/
160.0
*
log
(
1.0
/
h_sep
));
}
else
a_sq
=
6.0
*
MY_PI
*
mu
*
radi
*
(
1.0
/
4.0
/
h_sep
);
// generate the Pairwise Brownian Force: a_sq
Fbmag
=
prethermostat
*
sqrt
(
a_sq
);
// generate a random number
randr
=
rng
.
uniform
()
-
0.5
;
// contribution due to Brownian motion
fx
=
Fbmag
*
randr
*
delx
/
r
;
fy
=
Fbmag
*
randr
*
dely
/
r
;
fz
=
Fbmag
*
randr
*
delz
/
r
;
// add terms due to a_sh
if
(
FLAGLOG
)
{
// generate two orthogonal vectors to the line of centers
p1
[
0
]
=
delx
/
r
;
p1
[
1
]
=
dely
/
r
;
p1
[
2
]
=
delz
/
r
;
set_3_orthogonal_vectors
(
p1
,
p2
,
p3
);
// magnitude
Fbmag
=
prethermostat
*
sqrt
(
a_sh
);
// force in each of the two directions
randr
=
rng
.
uniform
()
-
0.5
;
fx
+=
Fbmag
*
randr
*
p2
[
0
];
fy
+=
Fbmag
*
randr
*
p2
[
1
];
fz
+=
Fbmag
*
randr
*
p2
[
2
];
randr
=
rng
.
uniform
()
-
0.5
;
fx
+=
Fbmag
*
randr
*
p3
[
0
];
fy
+=
Fbmag
*
randr
*
p3
[
1
];
fz
+=
Fbmag
*
randr
*
p3
[
2
];
}
// scale forces to appropriate units
fx
=
vxmu2f
*
fx
;
fy
=
vxmu2f
*
fy
;
fz
=
vxmu2f
*
fz
;
// sum to total force
f
[
i
][
0
]
-=
fx
;
f
[
i
][
1
]
-=
fy
;
f
[
i
][
2
]
-=
fz
;
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
//randr = rng.uniform()-0.5;
//fx = Fbmag*randr*delx/r;
//fy = Fbmag*randr*dely/r;
//fz = Fbmag*randr*delz/r;
f
[
j
][
0
]
+=
fx
;
f
[
j
][
1
]
+=
fy
;
f
[
j
][
2
]
+=
fz
;
}
// torque due to the Brownian Force
if
(
FLAGLOG
)
{
// location of the point of closest approach on I from its center
xl
[
0
]
=
-
delx
/
r
*
radi
;
xl
[
1
]
=
-
dely
/
r
*
radi
;
xl
[
2
]
=
-
delz
/
r
*
radi
;
// torque = xl_cross_F
tx
=
xl
[
1
]
*
fz
-
xl
[
2
]
*
fy
;
ty
=
xl
[
2
]
*
fx
-
xl
[
0
]
*
fz
;
tz
=
xl
[
0
]
*
fy
-
xl
[
1
]
*
fx
;
// torque is same on both particles
torque
[
i
][
0
]
-=
tx
;
torque
[
i
][
1
]
-=
ty
;
torque
[
i
][
2
]
-=
tz
;
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
torque
[
j
][
0
]
-=
tx
;
torque
[
j
][
1
]
-=
ty
;
torque
[
j
][
2
]
-=
tz
;
}
// torque due to a_pu
Fbmag
=
prethermostat
*
sqrt
(
a_pu
);
// force in each direction
randr
=
rng
.
uniform
()
-
0.5
;
tx
=
Fbmag
*
randr
*
p2
[
0
];
ty
=
Fbmag
*
randr
*
p2
[
1
];
tz
=
Fbmag
*
randr
*
p2
[
2
];
randr
=
rng
.
uniform
()
-
0.5
;
tx
+=
Fbmag
*
randr
*
p3
[
0
];
ty
+=
Fbmag
*
randr
*
p3
[
1
];
tz
+=
Fbmag
*
randr
*
p3
[
2
];
// torque has opposite sign on two particles
torque
[
i
][
0
]
-=
tx
;
torque
[
i
][
1
]
-=
ty
;
torque
[
i
][
2
]
-=
tz
;
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
torque
[
j
][
0
]
+=
tx
;
torque
[
j
][
1
]
+=
ty
;
torque
[
j
][
2
]
+=
tz
;
}
}
if
(
EVFLAG
)
ev_tally_xyz
(
i
,
j
,
nlocal
,
NEWTON_PAIR
,
0.0
,
0.0
,
-
fx
,
-
fy
,
-
fz
,
delx
,
dely
,
delz
);
}
}
}
}
/* ---------------------------------------------------------------------- */
double
PairBrownianOMP
::
memory_usage
()
{
double
bytes
=
memory_usage_thr
();
bytes
+=
PairBrownian
::
memory_usage
();
bytes
+=
comm
->
nthreads
*
sizeof
(
RanMars
*
);
bytes
+=
comm
->
nthreads
*
sizeof
(
RanMars
);
return
bytes
;
}
Event Timeline
Log In to Comment