Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F103061132
integration.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Feb 26, 23:17
Size
4 KB
Mime Type
text/x-c++
Expires
Fri, Feb 28, 23:17 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24487852
Attached To
rTAMAAS tamaas
integration.hh
View Options
/**
* @file
*
* @author Lucas Frérot <lucas.frerot@epfl.ch>
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Expolit is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Expolit is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Expolit. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef INTEGRATION_HH
#define INTEGRATION_HH
#include "differentiation.hh"
#include "exponential.hh"
#include "litteral.hh"
#include "polynomial.hh"
#include "types.hh"
namespace expolit {
namespace detail {
template <std::size_t i>
struct for_integ {
template <typename CT, std::size_t n>
static constexpr void integ(std::array<CT, n+1>& res,
const std::array<CT, n>& a) {
std::get<i>(res) = a[i-1] / static_cast<CT>(i);
for_integ<i-1>::integ(res, a);
}
};
template <>
struct for_integ<1> {
template <typename CT, std::size_t n>
static constexpr void integ(std::array<CT, n+1>& res,
const std::array<CT, n>& a) {
std::get<1>(res) = a[0];
}
};
} // namespace detail
/// Integrate polynomial
template <typename CT, UInt order>
constexpr auto integrate(const Polynomial<CT, order>& p) {
Polynomial<CT, order + 1> ip;
detail::for_integ<ip.terms-1>::integ(ip.coeffs, p.coeffs);
return ip;
}
/// Integrate litteral
template <typename Tag>
constexpr auto integrate(const Litteral<Tag>& q) {
constexpr Polynomial<Int, 1> id({0, 1});
return q * id;
}
/// Integrate constant * expression
template <typename CT, typename Derived>
constexpr auto integrate(const Product<Constant<CT>, Derived>& p) {
return p.operands.first * integrate(p.operands.second);
}
/// Integrate expression * constant
template <typename CT, typename Derived>
constexpr auto integrate(const Product<Derived, Constant<CT>>& p) {
return integrate(p.commute());
}
/// Integrate litteral * expression
template <typename Tag, typename Derived>
constexpr auto integrate(const Product<Litteral<Tag>, Derived>& p) {
return p.operands.first * integrate(p.operands.second);
}
/// Integrate expression * litteral
template <typename Tag, typename Derived>
constexpr auto integrate(const Product<Derived, Litteral<Tag>>& p) {
return integrate(p.commute());
}
/// Integrate litteral / expression
template <typename Tag, typename Derived>
constexpr auto integrate(const Division<Derived, Litteral<Tag>>& p) {
return integrate(p.operands.first) / p.operands.second;
}
/// Integrate exponential of order 1 polynomial
template <typename CT>
constexpr auto integrate(const Exponential<Polynomial<CT, 1>>& e) {
return Constant<CT>({1 / e.expression.coeffs.back()}) * e;
}
/// Integrate exponential of litteral * order 1 polynomial
template <typename Tag, typename CT>
constexpr auto
integrate(const Exponential<Product<Litteral<Tag>, Polynomial<CT, 1>>>& e) {
return e * Constant<CT>({1 / e.expression.operands.second.coeffs.back()}) /
e.expression.operands.first;
}
/// Integrate exponential of order 1 polynomial * litteral
template <typename Tag, typename CT>
constexpr auto
integrate(const Exponential<Product<Polynomial<CT, 1>, Litteral<Tag>>>& e) {
return integrate(e.op(e.expression.commute()));
}
/// Integration by parts of expression * polynomial
template <typename Derived, typename CT, UInt order>
constexpr auto integrate(const Product<Derived, Polynomial<CT, order>>& p) {
auto u = integrate(p.operands.first);
return u * p.operands.second -
integrate(u * differentiate(p.operands.second));
}
/// Integration by parts of polynomial * expression
template <typename Derived, typename CT, UInt order>
constexpr auto integrate(const Product<Polynomial<CT, order>, Derived>& p) {
return integrate(p.commute());
}
/// Integration of sum
template <typename Der1, typename Der2>
constexpr auto integrate(const Sum<Der1, Der2>& s) {
return integrate(s.operands.first) + integrate(s.operands.second);
}
/// Compute definite integral
template <typename T, typename Derived>
constexpr auto definite_integral(const std::pair<T, T>& bounds,
const Expression<Derived>& exp) {
auto integ = integrate(exp.downcast());
return integ(bounds.second) - integ(bounds.first);
}
} // namespace expolit
#endif
Event Timeline
Log In to Comment